The Effect of Nanoparticle-Enhanced Photoacoustic Stimulation on Multipotent Marrow Stromal Cells

被引:26
作者
Green, Danielle E. [1 ]
Longtin, Jon P. [2 ]
Sitharaman, Balaji [1 ]
机构
[1] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Mech Engn, Stony Brook, NY 11794 USA
关键词
single-walled carbon nanotube; pulse laser; photoacoustic effect; bone regeneration; osteoblast; MESENCHYMAL STEM-CELLS; IN-VIVO; LASER IRRADIATION; OSTEOBLASTIC DIFFERENTIATION; CARBON NANOTUBES; BONE; TISSUE; PROLIFERATION; EXPRESSION; PHENOTYPE;
D O I
10.1021/nn900434p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this article, we report a novel nanoparticle-enhanced biophysical technique that differentiates multipotent marrow stromal cells (MSCs) toward osteoblasts. We show that a brief (10 min) daily nanoparticle-facilitated exposure of MSCs to nanosecond pulse laser-induced photoacoustic (PA) stimulation enhances their differentiation toward osteoblasts, To observe osteodifferentiation under PA stimulation, tissue culture plates were seeded with MSCs without the osteogenic culture supplements (OS, 0.01 M beta-glycerophosphate, 50 mg/L ascorbic acid, 10(-8) M dexamethasone) in the presence and absence of single-walled carbon nanotubes (SWNTs) and gold nanoparticles (GNPs). The alkaline phosphatase activity, calcium content, and osteopontin secretion were monitored as indicators of MSCs' differentiation toward osteoblasts. The PA stimulated groups show up to 612% increase in calcium content compared to the controls cultured with osteogenic supplements (without PA stimulation) after 16 days. Among the PA stimulated groups, at day 16, MSCs incubated with SWNTs at 10 mu g/mL concentrations showed up to 97% greater calcium content than those that did not contain SWNTs. The results demonstrated that PA stimulation not only promotes osteogenesis but also is synergistically enhanced by the presence of nanoparticles and, thus, has major implications for bone regeneration applications.
引用
收藏
页码:2065 / 2072
页数:8
相关论文
共 52 条
[1]   Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix [J].
Abramovitch-Gottlib, L ;
Gross, T ;
Naveh, D ;
Geresh, S ;
Rosenwaks, S ;
Bar, I ;
Vago, R .
LASERS IN MEDICAL SCIENCE, 2005, 20 (3-4) :138-146
[2]   Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds [J].
Awad, HA ;
Wickham, MQ ;
Leddy, HA ;
Gimble, JM ;
Guilak, F .
BIOMATERIALS, 2004, 25 (16) :3211-3222
[3]   Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD [J].
Balasundaram, G ;
Sato, M ;
Webster, TJ .
BIOMATERIALS, 2006, 27 (14) :2798-2805
[4]  
Bell A.G., 1880, Am. J. Sci., V9, P404
[5]   Mesenchymal stem cells: Cell-based reconstructive therapy in orthopedics [J].
Caplan, AI .
TISSUE ENGINEERING, 2005, 11 (7-8) :1198-1211
[6]   Adult mesenchymal stem cells for tissue engineering versus regenerative medicine [J].
Caplan, Arnold I. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2007, 213 (02) :341-347
[7]   Thermal ablation of tumor cells with anti body-functionalized single-walled carbon nanotubes [J].
Chakravarty, Pavitra ;
Marches, Radu ;
Zimmerman, Neil S. ;
Swafford, Austin D. -E. ;
Bajaj, Pooja ;
Musselman, Inga H. ;
Pantano, Paul ;
Draper, Rockford K. ;
Vitetta, Ellen S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (25) :8697-8702
[8]   Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells [J].
Datta, N ;
Holtorf, HL ;
Sikavitsas, VI ;
Jansen, JA ;
Mikos, AG .
BIOMATERIALS, 2005, 26 (09) :971-977
[9]   Carbon nanotubes as photoacoustic molecular imaging agents in living mice [J].
De La Zerda, Adam ;
Zavaleta, Cristina ;
Keren, Shay ;
Vaithilingam, Srikant ;
Bodapati, Sunil ;
Liu, Zhuang ;
Levi, Jelena ;
Smith, Bryan R. ;
Ma, Te-Jen ;
Oralkan, Omer ;
Cheng, Zhen ;
Chen, Xiaoyuan ;
Dai, Hongjie ;
Khuri-Yakub, Butrus T. ;
Gambhir, Sanjiv S. .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :557-562
[10]   High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system [J].
Eghtedari, Mohammad ;
Oraevsky, Alexander ;
Copland, John A. ;
Kotov, Nicholas A. ;
Conjusteau, Andre ;
Motamedi, Massoud .
NANO LETTERS, 2007, 7 (07) :1914-1918