CNN-Based Deep Learning Technique for the Brain Tumor Identification and Classification in MRI Images

被引:20
|
作者
Mandle, Anil Kumar [1 ]
Sahu, Satya Prakash [2 ]
Gupta, Govind P. [2 ]
机构
[1] Natl Inst Technol, Raipur, Madhya Pradesh, India
[2] Natl Inst Technol, Dept Informat Technol, Raipur, Madhya Pradesh, India
来源
INTERNATIONAL JOURNAL OF SOFTWARE SCIENCE AND COMPUTATIONAL INTELLIGENCE-IJSSCI | 2022年 / 14卷 / 01期
关键词
Brain Tumor Types; Classification; Deep Learning; MRI Images; VGG-19; CNN; SEGMENTATION; FEATURES; FUSION;
D O I
10.4018/IJSSCI.304438
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A brain tumor is an abnormal development of cells in the brain that are either benign or malignant. Magnetic resonance imaging (MRI) is used to identify tumors. The manual evaluation of brain tumors from MRI images by a radiologist is a challenging task. Hence, this paper proposes VGG-19 convolutional neural networks (CNN)-based deep learning model for the classification of brain tumors. Initially, in the proposed model, contrast stretching technique is employed for noise removal. Next, a deep neural network is employed for rich feature extract. Further, these learning features are combined with classifier models of CNN for training and validation. Performance analysis of the proposed methodology and experiments have been carried out using publicly available MRI images in Figshare dataset of 3064 slices from 233 subjects. The proposed model has achieved 99.83% accuracy. Moreover, the proposed model obtained precision 96.32%, 98.26%, and 98.56%; recall of 97.82%, 98.62%, 98.87%; and specificity of 98.72%, 99.51%, and 99.43% for the glioma, meningioma, and pituitary tumors respectively.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Evaluation and Classification of the Brain Tumor MRI using Machine Learning Technique
    Pugalenthi, R.
    Rajakumar, M. P.
    Ramya, J.
    Rajinikanth, V
    CONTROL ENGINEERING AND APPLIED INFORMATICS, 2019, 21 (04): : 12 - 21
  • [32] Brain tumor detection from MRI images with using proposed deep learning model: the partial correlation-based channel selection
    Yilmaz, Atinc
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 : 2615 - 2633
  • [33] Combining the Transformer and Convolution for Effective Brain Tumor Classification Using MRI Images
    Aloraini, Mohammed
    Khan, Asma
    Aladhadh, Suliman
    Habib, Shabana
    Alsharekh, Mohammed F.
    Islam, Muhammad
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [34] CNN-Based Malware Family Classification and Evaluation
    Hebish, Mohamed Wael
    Awni, Mohamed
    2024 14TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, ICEENG 2024, 2024, : 219 - 224
  • [35] Performance Analysis of Several CNN Based Models for Brain MRI in Tumor Classification
    Wahlang, Imayanmosha
    Pohrmen, Fabiola Hazel
    2024 IEEE 8TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS, ICSIPA, 2024,
  • [36] Exploring Deep Learning-based Approaches for Brain Tumor Diagnosis from MRI Images
    Abdullah, Fasih
    Jamil, Akhtar
    Alazawi, Esraa Mohammed
    Hameed, Alaa Ali
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [37] A framework for efficient brain tumor classification using MRI images
    Guan, Yurong
    Aamir, Muhammad
    Rahman, Ziaur
    Ali, Ammara
    Abro, Waheed Ahmed
    Dayo, Zaheer Ahmed
    Bhutta, Muhammad Shoaib
    Hu, Zhihua
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) : 5790 - 5815
  • [38] Deep Learning Approaches for Brain Tumor Detection and Classification Using MRI Images (2020 to 2024): A Systematic Review
    Bouhafra, Sara
    El Bahi, Hassan
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, : 1403 - 1433
  • [39] MRI Image Registration Considerably Improves CNN-Based Disease Classification
    Klingenberg, Malte
    Stark, Didem
    Eitel, Fabian
    Ritter, Kerstin
    MACHINE LEARNING IN CLINICAL NEUROIMAGING, 2021, 13001 : 44 - 52
  • [40] Activity Pattern Aware Spectrum Sensing: A CNN-Based Deep Learning Approach
    Xie, Jiandong
    Liu, Chang
    Liang, Ying-Chang
    Fang, Jun
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (06) : 1025 - 1028