CNN-Based Deep Learning Technique for the Brain Tumor Identification and Classification in MRI Images

被引:20
|
作者
Mandle, Anil Kumar [1 ]
Sahu, Satya Prakash [2 ]
Gupta, Govind P. [2 ]
机构
[1] Natl Inst Technol, Raipur, Madhya Pradesh, India
[2] Natl Inst Technol, Dept Informat Technol, Raipur, Madhya Pradesh, India
来源
INTERNATIONAL JOURNAL OF SOFTWARE SCIENCE AND COMPUTATIONAL INTELLIGENCE-IJSSCI | 2022年 / 14卷 / 01期
关键词
Brain Tumor Types; Classification; Deep Learning; MRI Images; VGG-19; CNN; SEGMENTATION; FEATURES; FUSION;
D O I
10.4018/IJSSCI.304438
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A brain tumor is an abnormal development of cells in the brain that are either benign or malignant. Magnetic resonance imaging (MRI) is used to identify tumors. The manual evaluation of brain tumors from MRI images by a radiologist is a challenging task. Hence, this paper proposes VGG-19 convolutional neural networks (CNN)-based deep learning model for the classification of brain tumors. Initially, in the proposed model, contrast stretching technique is employed for noise removal. Next, a deep neural network is employed for rich feature extract. Further, these learning features are combined with classifier models of CNN for training and validation. Performance analysis of the proposed methodology and experiments have been carried out using publicly available MRI images in Figshare dataset of 3064 slices from 233 subjects. The proposed model has achieved 99.83% accuracy. Moreover, the proposed model obtained precision 96.32%, 98.26%, and 98.56%; recall of 97.82%, 98.62%, 98.87%; and specificity of 98.72%, 99.51%, and 99.43% for the glioma, meningioma, and pituitary tumors respectively.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Feature-enhanced deep learning technique with soft attention for MRI-based brain tumor classification
    Mohanty B.C.
    Subudhi P.K.
    Dash R.
    Mohanty B.
    International Journal of Information Technology, 2024, 16 (3) : 1617 - 1626
  • [22] Classification of CT brain images based on deep learning networks
    Gao, Xiaohong W.
    Hui, Rui
    Tian, Zengmin
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 138 : 49 - 56
  • [23] Brain Tumor Segmentation Using Deep Learning on MRI Images
    Mostafa, Almetwally M.
    Zakariah, Mohammed
    Aldakheel, Eman Abdullah
    DIAGNOSTICS, 2023, 13 (09)
  • [24] A New Data Augmentation Technique for the CNN-based Classification of Hyperspectral Imagery
    Accion Montes, Alvaro
    Heras, Dora B.
    Arguello, Francisco
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXVII, 2021, 11862
  • [25] An efficient brain tumor classification using MRI images with hybrid deep intelligence model
    Reddy, Annapareddy V. N.
    Mallick, Pradeep Kumar
    Rao, B.
    Kanakamedala, Phaneendra
    IMAGING SCIENCE JOURNAL, 2024, 72 (04) : 451 - 465
  • [26] Comparison of CNN-based deep learning architectures for rice diseases classification
    Ahad, Md Taimur
    Li, Yan
    Song, Bo
    Bhuiyan, Touhid
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2023, 9 : 22 - 35
  • [27] COMPARATIVE ANALYSIS OF PERFORMANCE OF DEEP CNN BASED FRAMEWORK FOR BRAIN MRI CLASSIFICATION USING TRANSFER LEARNING
    Kulkarni, Sunita M.
    Sundari, G.
    JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2021, 16 (04): : 2901 - 2917
  • [28] Analysis of MRI brain tumor images using deep learning techniques
    Kalyani, B. J. D.
    Meena, K.
    Murali, E.
    Jayakumar, L.
    Saravanan, D.
    SOFT COMPUTING, 2023, 27 (11) : 7535 - 7542
  • [29] Deep Learning and Improved Particle Swarm Optimization Based Multimodal Brain Tumor Classification
    Tahir, Ayesha Bin T.
    Khan, Muhamamd Attique
    Alhaisoni, Majed
    Khan, Junaid Ali
    Nam, Yunyoung
    Wang, Shui-Hua
    Javed, Kashif
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (01): : 1099 - 1116
  • [30] Segmentation and identification of brain tumour in MRI images using PG-OneShot learning CNN model
    Ali, Azmat
    Wang, Yulin
    Shi, Xiaochuan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (34) : 81361 - 81382