New insights in the geometry and interconnection of port-Hamiltonian systems

被引:4
|
作者
Barbero-Linan, M. [1 ,3 ]
Cendra, H. [2 ]
Garcia-Torano Andres, E. [2 ]
Martin de Diego, D. [3 ]
机构
[1] Univ Politecn Madrid, Dept Matemat Aplicada, Av Juan de Herrera 4, E-28040 Madrid, Spain
[2] Univ Nacl Sur, Dept Matemat, CONICET, Av Alem 1253, RA-8000 Babia Blanca, Argentina
[3] CSIC UAM UC3M UCM, Inst Ciencias Matemat, C Nicolas Cabrera 13-15, Madrid 28049, Spain
关键词
Dirac structures; port-Hamiltonian systems; coisotropic structures; CONSERVING PHYSICAL SYSTEMS; DIRAC STRUCTURES; VARIATIONAL INTEGRATORS; LAGRANGIAN MECHANICS; FORMULATION;
D O I
10.1088/1751-8121/aad4ba
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss a new geometric construction of port-Hamiltonian systems. Using this framework, we revisit the notion of interconnection providing it with an intrinsic description. Special emphasis on theoretical and applied examples is given throughout the paper to show the applicability and the novel contributions of the proposed framework.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] From statistical physics to macroscopic port-Hamiltonian Systems: A roadmap
    Najnudel, Judy
    Helie, Thomas
    Roze, David
    Muller, Remy
    IFAC PAPERSONLINE, 2021, 54 (19): : 70 - 75
  • [42] Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems
    Arjan van der Schaft
    Bernhard Maschke
    Vietnam Journal of Mathematics, 2020, 48 : 929 - 939
  • [43] Dirac and Lagrange Algebraic Constraints in Nonlinear Port-Hamiltonian Systems
    van der Schaft, Arjan
    Maschke, Bernhard
    VIETNAM JOURNAL OF MATHEMATICS, 2020, 48 (04) : 929 - 939
  • [44] Discrete-time port-Hamiltonian systems: A definition based on symplectic integration
    Kotyczka, Paul
    Lefevre, Laurent
    SYSTEMS & CONTROL LETTERS, 2019, 133
  • [45] On the Generating Functions of Irreversible port-Hamiltonian Systems
    Kirchhoff, Jonas
    Maschke, Bernhard
    IFAC PAPERSONLINE, 2023, 56 (02): : 10447 - 10452
  • [46] On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems
    Macchelli, Alessandro
    Le Gorrec, Yann
    Ramirez, Hector
    Zwart, Hans
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (04) : 1700 - 1713
  • [47] Twenty years of distributed port-Hamiltonian systems: a literature review
    Rashad, Ramy
    Califano, Federico
    van der Schaft, Arjan J.
    Stramigioli, Stefano
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2020, 37 (04) : 1400 - 1422
  • [48] Control of port-Hamiltonian differential-algebraic systems and applications
    Mehrmann, Volker
    Unger, Benjamin
    ACTA NUMERICA, 2023, 32 : 395 - 515
  • [49] Port-Hamiltonian Modeling of Multiphysics Systems and Object-Oriented Implementation With the Modelica Language
    Marquez, Francisco M.
    Zufiria, Pedro J.
    Yebra, Luis J.
    IEEE ACCESS, 2020, 8 : 105980 - 105996
  • [50] Discrete-time port-Hamiltonian systems based on Gauss-Legendre collocation
    Kotyczka, Paul
    Lefevre, Laurent
    IFAC PAPERSONLINE, 2018, 51 (03): : 125 - 130