The Effect of Hot-Mounting on the Microstructure of an As-Quenched Auto-Tempered Low-Carbon Martensitic Steel

被引:10
|
作者
Babu, Shashank Ramesh [1 ]
Jaskari, Matias [2 ]
Jarvenpaa, Antti [2 ]
Porter, David [1 ]
机构
[1] Univ Oulu, Mat & Mech Engn, Ctr Adv Steels Res, Oulun 90014, Finland
[2] Univ Oulu, Kerttu Saalasti Inst, Pajatie 5, FI-85500 Nivala, Finland
基金
欧盟地平线“2020”;
关键词
hot-mounting; martensite; tempering; quenching; cementite; LATH MARTENSITE; MECHANICAL-PROPERTIES; PRECIPITATION; TOOLS;
D O I
10.3390/met9050550
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effect of hot-mounting for metallographic studies of as-quenched low-carbon martensitic steels has been studied. Hot-mounting is typically carried out at 150-200 degrees C, i.e., a low-temperature tempering regime. Cold- and hot-mounted specimens from an as-quenched low-carbon auto-tempered steel were examined using a scanning electron microscope and their hardness levels were also compared. It was found that hot-mounting causes additional tempering that manifests as the appearance of new precipitates in those regions that are free of auto-tempered cementite. The observations were rationalized using DICTRA simulations to calculate the potential growth of cementite. Hot-mounting was also shown to cause a small but statistically significant increase in the hardness of the martensite.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Effect of hot rolling process parameters on the microstructure and mechanical properties of continuously cooled low-carbon high-strength low-alloy (HSLA) steel
    Kucukakarsu, Furkan Yilmaz
    Ayhan, Ismail Irfan
    Alan, Emre
    Tastemur, Demet
    Gunduz, Suleyman
    MATERIALS TESTING, 2022, 64 (08) : 1136 - 1149
  • [22] Effect of Sub-rapid Solidification and Secondary Cooling on Microstructure and Properties of Strip Cast Low-Carbon Bainitic-Martensitic Steel
    Lyu, Peisheng
    Wang, Wanlin
    Wang, Chonghao
    Zhou, Lejun
    Fang, Yuan
    Wu, Jianchun
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2021, 52 (09): : 3945 - 3960
  • [23] Influence of the microstructure on the corrosion behaviour of low-carbon martensitic stainless steel after tempering treatment
    Vignal, V.
    Ringeval, S.
    Thiebaut, S.
    Tabalaiev, K.
    Dessolin, C.
    Heintz, O.
    Herbst, F.
    Chassagnon, R.
    CORROSION SCIENCE, 2014, 85 : 42 - 51
  • [24] Effect of hot rolling temperature on grain size and precipitation hardening in a Ti-microalloyed low-carbon martensitic steel
    Han, Y.
    Shi, J.
    Xu, L.
    Cao, W. Q.
    Dong, H.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 553 : 192 - 199
  • [25] Microstructure and Mechanical Properties Evaluation of Microalloyed Low-Carbon Reduced Activation Ferritic/Martensitic Steel
    Cao, Haibo
    Chen, Wei
    STEEL RESEARCH INTERNATIONAL, 2023, 94 (05)
  • [26] Effect of Boron on the Strength and Toughness of Direct-Quenched Low-Carbon Niobium Bearing Ultra-High-Strength Martensitic Steel
    Hannula, Jaakko
    Koemi, Jukka
    Porter, David A.
    Somani, Mahesh C.
    Kaijalainen, Antti
    Suikkanen, Pasi
    Yang, Jer-Ren
    Tsai, Shao-Pu
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2017, 48A (11): : 5344 - 5356
  • [27] Effect of partitioning treatment on the microstructure and properties of low-carbon ferritic stainless steel treated by a quenching and partitioning process
    Meng, Lixin
    Li, Wenqi
    Shi, Quanxin
    Guo, Hongkui
    Liang, Wei
    Lu, Huihu
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 851
  • [28] The Effect of Stress on Bainite Transformation, Microstructure, and Properties of a Low-Carbon Bainitic Steel
    Liu, Man
    Xu, Guang
    Tian, Junyu
    Yuan, Qing
    Zhou, Mingxing
    Hu, Haijiang
    STEEL RESEARCH INTERNATIONAL, 2019, 90 (10)
  • [29] Effect of Austenitizing and Cooling Process on Microstructure Transformation of Low-Carbon Bainite Steel
    Zhou, Xiaoqing
    Wang, Hongpo
    Chen, Mingjian
    Shi, Li
    Wang, Yu
    12TH INTERNATIONAL SYMPOSIUM ON HIGH-TEMPERATURE METALLURGICAL PROCESSING, 2022, : 403 - 412
  • [30] The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel
    Dutta, R. K.
    Petrov, R. H.
    Delhez, R.
    Hermans, M. J. M.
    Richardson, I. M.
    Boettger, A. J.
    ACTA MATERIALIA, 2013, 61 (05) : 1592 - 1602