Cryogen-free variable temperature scanning SQUID microscope

被引:13
|
作者
Bishop-Van Horn, Logan [1 ,2 ]
Cui, Zheng [1 ,3 ]
Kirtley, John R. [4 ]
Moler, Kathryn A. [1 ,3 ,4 ]
机构
[1] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[4] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2019年 / 90卷 / 06期
关键词
SUPERCONDUCTIVITY;
D O I
10.1063/1.5085008
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Scanning Superconducting QUantum Interference Device (SQUID) microscopy is a powerful tool for imaging local magnetic properties of materials and devices, but it requires a low-vibration cryogenic environment, traditionally achieved by thermal contact with a bath of liquid helium or the mixing chamber of a wet dilution refrigerator. We mount a SQUID microscope on the 3 K plate of a Bluefors cryocooler and characterize its vibration spectrum by measuring SQUID noise in a region of sharp flux gradient. By implementing passive vibration isolation, we reduce relative sensor-sample vibrations to 20 nm in-plane and 15 nm out-of-plane. A variable-temperature sample stage that is thermally isolated from the SQUID sensor enables the measurement at sample temperatures from 2.8 K to 110 K. We demonstrate these advances by imaging inhomogeneous diamagnetic susceptibility and vortex pinning in optimally doped yttrium barium copper oxide above 90 K.
引用
收藏
页数:7
相关论文
empty
未找到相关数据