Wet-Chemical Noncovalent Functionalization of CVD Graphene: Molecular Doping and Its Effect on Electrolyte-Gated Graphene Field-Effect Transistor Characteristics

被引:12
|
作者
Dieng, Mbaye [1 ,2 ]
Bensifia, Mohamed [3 ]
Borme, Jerome [4 ]
Florea, Ileana [2 ]
Abreu, Catarina M. [4 ]
Jama, Charafeddine [5 ]
Leonard, Celine [3 ]
Alpuim, Pedro [4 ,6 ]
Pribat, Didier [2 ]
Yassar, Abderrahim [2 ]
Bouanis, Fatima Z. [1 ]
机构
[1] Univ Gustave Eiffel, COSYS LISIS, F-77454 Marne La Vallee, France
[2] Ecole Polytech, Lab Phys Interfaces & Thin Films, UMR 7647, IPParis,CNRS, F-91128 Palaiseau, France
[3] Univ Paris Est Creteil, Univ Gustave Eiffel, MSME, CNRS UMR 8208, F-77454 Marne La Vallee, France
[4] INL Int Iberian Nanotechnol Lab, P-4715330 Braga, Portugal
[5] Univ Lille, UMR 8207, Cent Lille, INRAE,CNRS,UMET Unite Mat & Transformat, F-59000 Lille, France
[6] Univ Minho, Dept Phys, P-4710057 Braga, Portugal
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2022年 / 126卷 / 09期
基金
欧盟地平线“2020”;
关键词
RAMAN-SPECTROSCOPY; TRANSPORT; FILMS;
D O I
10.1021/acs.jpcc.1c10737
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene sheets (mono- and multilayers) were synthesized by chemical vapor deposition and functionalized with various aromatic molecules such as Fe-/Co-porphyrin and Fe-phthalocyanine through pi-pi interactions. The resulting nanohybrid materials were characterized by Raman spectroscopy (RS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM) techniques. The presence of physi-adsorbed molecules (Fe-/Co-porphyrin and Fe-phthalocyanine) on the graphene sheet surface is evidenced by spectroscopic and microscopic analyses, which confirm that these molecules are immobilized through electrostatic and pi-pi interactions. RS confirmed the n- or p-type doping of graphene, according to the chemical nature of those physi-adsorbed molecules. The electrical characteristics of electrolyte-gated graphene field-effect transistors (GFETs) based on nanohybrid materials were subsequently evaluated and demonstrated a charge transfer between the physi-adsorbed molecules and the graphene. All of these results suggest that the electronic structure of graphene can be tailored by doping with aromatic molecules. Density functional theory (DFT) calculations were performed to confirm these observations.
引用
收藏
页码:4522 / 4533
页数:12
相关论文
共 50 条
  • [31] IGZO-based electrolyte-gated field-effect transistor for in situ biological sensing platform
    Chae, Myung-Sic
    Park, Ju Hyun
    Son, Hyun Woo
    Hwang, Kyo Seon
    Kim, Tae Geun
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 262 : 876 - 883
  • [32] Electrolyte-gated carbon nanotube field-effect transistor-based biosensors: Principles and applications
    Shkodra, Bajramshahe
    Petrelli, Mattia
    Angeli, Martina Aurora Costa
    Garoli, Denis
    Nakatsuka, Nako
    Lugli, Paolo
    Petti, Luisa
    APPLIED PHYSICS REVIEWS, 2021, 8 (04)
  • [33] Electrolyte-Gated Organic Field-Effect Transistor Sensors Based on Supported Biotinylated Phospholipid Bilayer
    Magliulo, Maria
    Mallardi, Antonia
    Mulla, Mohammad Yusuf
    Cotrone, Serafina
    Pistillo, Bianca Rita
    Favia, Pietro
    Vikholm-Lundin, Inger
    Palazzo, Gerardo
    Torsi, Luisa
    ADVANCED MATERIALS, 2013, 25 (14) : 2090 - 2094
  • [34] Imaging Reconfigurable Molecular Concentration on a Graphene Field-Effect Transistor
    Liou, Franklin
    Tsai, Hsin-Zon
    Aikawa, Andrew S.
    Natividad, Kyler C.
    Tang, Eric
    Ha, Ethan
    Riss, Alexander
    Watanabe, Kenji
    Taniguchi, Takashi
    Lischner, Johannes
    Zettl, Alex
    Crommie, Michael F.
    NANO LETTERS, 2021, 21 (20) : 8770 - 8776
  • [35] Effect of Displacement Current on Current-Voltage Characteristics in Electrolyte-Gated Graphene FETs
    Park, Jun-Mo
    Lee, Jong-Ho
    2014 International Conference on Electronics, Information and Communications (ICEIC), 2014,
  • [36] Fabrication and characterization of CVD-grown graphene based Field-Effect Transistor
    Wei, W.
    Deokar, G.
    Belhaj, M.
    Mele, D.
    Pallecchi, E.
    Pichonat, E.
    Vignaud, D.
    Happy, H.
    2014 44TH EUROPEAN MICROWAVE CONFERENCE (EUMC), 2014, : 367 - 370
  • [37] Graphene Field-Effect Transistor and Its Application for Electronic Sensing
    Zhan, Beibei
    Li, Chen
    Yang, Jun
    Jenkins, Gareth
    Huang, Wei
    Dong, Xiaochen
    SMALL, 2014, 10 (20) : 4042 - 4065
  • [38] High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization
    Fu, W.
    Nef, C.
    Tarasov, A.
    Wipf, M.
    Stoop, R.
    Knopfmacher, O.
    Weiss, M.
    Calame, M.
    Schoenenberger, C.
    NANOSCALE, 2013, 5 (24) : 12104 - 12110
  • [39] Graphene-Based Electrolyte-Gated Field-Effect Transistors for Potentiometrically Sensing Neuropeptide Y in Physiologically Relevant Environments
    Islam, Ahmad E.
    Martineau, Rhett
    Crasto, Cameron M.
    Kim, Hyunil
    Rao, Rahul S.
    Maruyama, Benji
    Kim, Steve S.
    Drummy, Lawrence F.
    ACS APPLIED NANO MATERIALS, 2020, 3 (06): : 5088 - 5097
  • [40] Electrochemically Gated Graphene Field-Effect Transistor for Extracellular Cell Signal Recording
    Asgarifar, Sanaz
    Gomes, Henrique L.
    Mestre, Ana
    Inacio, Pedro
    Braganca, J.
    Borme, Jerome
    Machado, George, Jr.
    Cerqueira, Fatima
    Alpuim, Pedro
    TECHNOLOGICAL INNOVATION FOR CYBER-PHYSICAL SYSTEMS, 2016, 470 : 558 - 564