On line signature verification: Fusion of a hidden Markov model and a neural network via a support vector machine

被引:39
作者
Fuentes, M [1 ]
Garcia-Salicetti, S [1 ]
Dorizzi, B [1 ]
机构
[1] Inst Natl Telecommun, Dept EPH, F-91011 Evry, France
来源
EIGHTH INTERNATIONAL WORKSHOP ON FRONTIERS IN HANDWRITING RECOGNITION: PROCEEDINGS | 2002年
关键词
D O I
10.1109/IWFHR.2002.1030918
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose in this work to perform on-line signature verification by the fusion of two complementary, verification modules. The first one considers a signature as a sequence of points and models the genuine signatures of a given signer by a Hidden Markov Model (HMM). Forgeries are used to compute a decision threshold. In the second module, global parameters of a signature are the inputs of a two-classes neural network trained for each signer on both the genuine and "other" signatures (genuine signatures of other signers). Fusion of the scores given by these two experts through a Support Vector Machine (SVM), allows improving the results over those of each module, on Philips' Database.
引用
收藏
页码:253 / 258
页数:4
相关论文
共 18 条
[1]  
[Anonymous], 1999, The Nature Statist. Learn. Theory
[2]  
BENYACOUB S, 1998, IDIAP07
[3]  
BROMLEY J, 1998, INT J PATTERN RECOGN, V7, P669
[4]  
Chapelle O, 2000, CHOOSING KERNEL PARA
[5]  
Dolfing J. G. A., 1998, THESIS PHILIPS ELECT
[6]  
Dolfing JGA, 1998, INT C PATT RECOG, P1309, DOI 10.1109/ICPR.1998.711942
[7]  
HANGAI S, 2000, ICPR, P483
[8]   A Hidden Markov Model approach to online handwritten signature verification [J].
Kashi R. ;
Hu J. ;
Nelson W.L. ;
Turin W. .
International Journal on Document Analysis and Recognition, 1998, 1 (2) :102-109
[9]  
Leclerc F., 1994, International Journal of Pattern Recognition and Artificial Intelligence, V8, P643, DOI 10.1142/S0218001494000346
[10]  
LETJMAN D, 2001, ICDAR, P992