ROBUST ADAPTED PRINCIPAL COMPONENT ANALYSIS FOR FACE RECOGNITION

被引:6
|
作者
Chen, Shaokang [1 ]
Lovell, Brian C. [1 ]
Shan, Ting [1 ]
机构
[1] Univ Queensland, Sch Informat Technol & Elect Engn, NICTA, St Lucia, Qld 4067, Australia
关键词
Face recognition; pose; illumination and expression; face subspace; space rotation; ILLUMINATION; APPEARANCE; EIGENFACES; MODELS; POSE; PCA;
D O I
10.1142/S0218001409007284
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recognizing faces with uncontrolled pose, illumination, and expression is a challenging task due to the fact that features insensitive to one variation may be highly sensitive to the other variations. Existing techniques dealing with just one of these variations are very often unable to cope with the other variations. The problem is even more difficult in applications where only one gallery image per person is available. In this paper, we describe a recognition method, Adapted Principal Component Analysis (APCA), that can simultaneously deal with large variations in both illumination and facial expression using only a single gallery image per person. We have now extended this method to handle head pose variations in two steps. The first step is to apply an Active Appearance Model (AAM) to the non-frontal face image to construct a synthesized frontal face image. The second is to use APCA for classification robust to lighting and pose. The proposed technique is evaluated on three public face databases - Asian Face, Yale Face, and FERET Database - with images under different lighting conditions, facial expressions, and head poses. Experimental results show that our method performs much better than other recognition methods including PCA, FLD, PRM and LTP. More specifically, we show that by using AAM for frontal face synthesis from high pose angle faces, the recognition rate of our APCA method increases by up to a factor of 4.
引用
收藏
页码:491 / 520
页数:30
相关论文
共 50 条
  • [1] Face Recognition Using Principal Component Analysis
    Kaur, Ramandeep
    Himanshi, Er.
    2015 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2015, : 585 - 589
  • [2] COMBINING SPEEDED-UP ROBUST FEATURES WITH PRINCIPAL COMPONENT ANALYSIS IN FACE RECOGNITION SYSTEM
    Lin, Shinfeng D.
    Liu, Bo-Feng
    Lin, Jia-Hong
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (12): : 8545 - 8556
  • [3] Diagonal principal component analysis for face recognition
    Zhang, DQ
    Zhou, ZH
    Chen, SC
    PATTERN RECOGNITION, 2006, 39 (01) : 140 - 142
  • [4] Wavelet Decomposition Based Principal Component Analysis for Face Recognition Using MATLAB
    Sharma, Mahesh Kumar
    Sharma, Shashikant
    Leeprechanon, Nopbhorn
    Ranjan, Aashish
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS (ICCS-2015), 2016, 1715
  • [5] AN IMPROVED FRACTIONAL TWO-DIMENSIONAL PRINCIPAL COMPONENT ANALYSIS FOR FACE RECOGNITION
    Alsaqre, Falah
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2022, 8 (01): : 87 - 97
  • [6] IMPACT OF FULL RANK PRINCIPAL COMPONENT ANALYSIS ON CLASSIFICATION ALGORITHMS FOR FACE RECOGNITION
    Song, Fengxi
    You, Jane
    Zhang, David
    Xu, Yong
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2012, 26 (03)
  • [7] Advanced variations of two-dimensional principal component analysis for face recognition
    Zhao, Meixiang
    Jia, Zhigang
    Cai, Yunfeng
    Chen, Xiao
    Gong, Dunwei
    NEUROCOMPUTING, 2021, 452 : 653 - 664
  • [8] Multilinear principal component analysis for face recognition with fewer features
    Wang, Jin
    Barreto, Armando
    Wang, Lu
    Chen, Yu
    Rishe, Naphtali
    Andrian, Jean
    Adjouadi, Malek
    NEUROCOMPUTING, 2010, 73 (10-12) : 1550 - 1555
  • [9] Face Recognition using Euler Principal Component Analysis
    Boon, Yinn Xi
    Ch'ng, Sue Inn
    2015 4TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION ICIEV 15, 2015,
  • [10] Face recognition with weighted kernel principal component analysis
    Liu, Nan
    Wang, Han
    Yau, Wei-Yun
    2006 9TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION, VOLS 1- 5, 2006, : 445 - +