WEIGHTED ELLIPTIC ESTIMATES FOR A MIXED BOUNDARY SYSTEM RELATED TO THE DIRICHLET-NEUMANN OPERATOR ON A CORNER DOMAIN

被引:0
|
作者
Ming, Mei [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math, 135 Xingangxi Rd, Guangzhou 510275, Guangdong, Peoples R China
关键词
Weighted elliptic estimates; corner domain; mixed boundary problem; Dirichlet-Neumann operator; GENERAL EDGE ASYMPTOTICS; 2ND-ORDER; COEFFICIENTS;
D O I
10.3934/dcds.2019264
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the H-2 existence of the solution, we investigate weighted estimates for a mixed boundary elliptic system in a two-dimensional corner domain, when the contact angle omega is an element of (0, pi/2). This system is closely related to the Dirichlet-Neumann operator in the water-waves problem, and the weight we choose is decided by singularities of the mixed boundary system. Meanwhile, we also prove similar weighted estimates with a different weight for the Dirichlet boundary problem as well as the Neumann boundary problem when omega is an element of (0, pi).
引用
收藏
页码:6039 / 6067
页数:29
相关论文
共 50 条
  • [1] Elliptic estimates for the Dirichlet-Neumann operator on a corner domain
    Ming, Mei
    Wang, Chao
    ASYMPTOTIC ANALYSIS, 2017, 104 (3-4) : 103 - 166
  • [2] Semilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions
    Colorado, E
    Peral, I
    JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) : 468 - 507
  • [3] Semilinear Fractional Elliptic Problems with Mixed Dirichlet-Neumann Boundary Conditions
    José Carmona
    Eduardo Colorado
    Tommaso Leonori
    Alejandro Ortega
    Fractional Calculus and Applied Analysis, 2020, 23 : 1208 - 1239
  • [4] SEMILINEAR FRACTIONAL ELLIPTIC PROBLEMS WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Carmona, Jose
    Colorado, Eduardo
    Leonori, Tommaso
    Ortega, Alejandro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (04) : 1208 - 1239
  • [5] BOUNDEDNESS AND A PRIORI ESTIMATES OF SOLUTIONS TO ELLIPTIC SYSTEMS WITH DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Kelemen, Sandor
    Quittner, Pavol
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2010, 9 (03) : 731 - 740
  • [6] Positive solutions for singular elliptic equations with mixed Dirichlet-Neumann boundary conditions
    Li, Yuanyuan
    Ruf, Bernhard
    Guo, Qianqiao
    Niu, Pengcheng
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (04) : 374 - 397
  • [7] Regularity of solutions to a fractional elliptic problem with mixed Dirichlet-Neumann boundary data
    Carmona, Jose
    Colorado, Eduardo
    Leonori, Tommaso
    Ortega, Alejandro
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (04) : 521 - 539
  • [8] SINGULAR ELLIPTIC PROBLEMS WITH DIRICHLET OR MIXED DIRICHLET-NEUMANN NON-HOMOGENEOUS BOUNDARY CONDITIONS
    Godoy, Tomas
    OPUSCULA MATHEMATICA, 2023, 43 (01) : 19 - 46
  • [9] WEIGHTED TOTAL VARIATION MINIMIZATION PROBLEM WITH MIXED DIRICHLET-NEUMANN BOUNDARY CONDITIONS
    Dweik, Samer
    PACIFIC JOURNAL OF MATHEMATICS, 2025, 335 (01)
  • [10] On domain monotonicity for the principal eigenvalue of the Laplacian with a mixed Dirichlet-Neumann boundary condition
    Pinsky, RG
    Geometry, Spectral Theory, Groups, and Dynamics, 2005, 387 : 245 - 252