Multiple critical points of perturbed symmetric strongly indefinite functionals

被引:15
作者
Bonheure, Denis [1 ]
Ramos, Miguel [2 ]
机构
[1] Catholic Univ Louvain, Inst Math Pure & Appl, B-1348 Louvain La Neuve, Belgium
[2] Univ Lisbon, CMAF, Fac Sci, P-1649003 Lisbon, Portugal
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 02期
关键词
Elliptic system; Strongly indefinite functional; Perturbation from symmetry; Lyapunov-Schmidt reduction; Genericity; ELLIPTIC SYSTEM;
D O I
10.1016/j.anihpc.2008.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the elliptic system -Delta u = vertical bar v vertical bar(q-2)v+k(x), x is an element of Omega, -Delta v=vertical bar u vertical bar(p-2)u+h(x), x is an element of Omega, where Omega is a regular bounded domain of R-N, N >= 3 and h, k is an element of L-2(Omega), admits an unbounded sequence of solutions (u(k), v(k)) is an element of H-0(1)(Omega) x H-0(1)(Omega), provided 2 < p <= q and N/2 (1-1/p-1/q) < p- 1/p. We also prove a generic multiplicity result for exponents in the open region bounded by the lines p = 2, q = 2 and the critical hyperbola. (c) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:675 / 688
页数:14
相关论文
共 28 条
[1]   A superquadratic indefinite elliptic system and its Morse-Conley-Floer homology [J].
Angenent, S ;
van der Vorst, R .
MATHEMATISCHE ZEITSCHRIFT, 1999, 231 (02) :203-248
[2]  
[Anonymous], 1972, Soviet Math. Dokl.
[3]  
[Anonymous], 1986, CBMS REG C SER MATH
[4]   TOPOLOGICAL RESULTS ON A CERTAIN CLASS OF FUNCTIONALS AND APPLICATION [J].
BAHRI, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 41 (03) :397-427
[5]   MORSE INDEX OF SOME MIN MAX CRITICAL-POINTS .1. APPLICATION TO MULTIPLICITY RESULTS [J].
BAHRI, A ;
LIONS, PL .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (08) :1027-1037
[6]   A PERTURBATION METHOD IN CRITICAL-POINT THEORY AND APPLICATIONS [J].
BAHRI, A ;
BERESTYCKI, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 267 (01) :1-32
[7]   The multiplicity of solutions in non-homogeneous boundary value problems [J].
Bolle, P ;
Ghoussoub, N ;
Tehrani, H .
MANUSCRIPTA MATHEMATICA, 2000, 101 (03) :325-350
[8]   Upper estimates for the energy of solutions of nonhomogeneous boundary value problems [J].
Castro, A ;
Clapp, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (01) :167-175
[9]  
Clapp M, 2004, ELECTRON J DIFFER EQ
[10]   POSITIVE SOLUTIONS OF SEMILINEAR ELLIPTIC-SYSTEMS [J].
CLEMENT, P ;
DEFIGUEIREDO, DG ;
MITIDIERI, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (5-6) :923-940