Structural, microstructure and electric properties of SnO2-Sb2O5-Cr2O3 varistor ceramics doped with Co2SnO4 spinet phase previously synthesized

被引:13
|
作者
Hernandez, M. B. [1 ]
Garcia-Villareal, S. [2 ]
Cienfuegos-Pelaes, R. F. [1 ]
Gomez-Rodriguez, C. [3 ]
Aguilar-Martinez, J. A. [1 ]
机构
[1] Univ Autonoma Nuevo Leon, Fac Ingn Mecan & Elect, CIIIA, Carretera Salinas Victoria Km 2-3, Apodaca 66600, NL, Mexico
[2] Univ Autonoma Coahuila, Fac Met, Carr 57,Km 4-5, Monclova 25710, Coah, Mexico
[3] Univ Politecn Apodaca UPAP, Av Politecn Cruz Con Carretera Miguel Aleman, Apodaca 66600, NL, Mexico
关键词
X-ray diffraction; Electronic properties; Ceramics; Sintering; SNO2; VARISTORS; SINTERING TEMPERATURE; ZNO; NANOMATERIALS; MORPHOLOGY; BEHAVIOR; CR2O3;
D O I
10.1016/j.jallcom.2016.12.419
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present investigation reports the variations of the microstructure, structure and electrical properties due to a change in the Co2SnO4 content of SnO2-Cr2O3-Sb2O5 ceramic samples. The ceramic system was (99.9-X) % SnO2- X% Co2SnO4- 0.05%Sb2O5-0.05% Cr2O3, where X = 0, 0.5, 1, 2 and 4 mol %. In order to obtain a comprehensive knowledge of the samples, characterization techniques such as Thermal Analysis, X-ray Powder Diffraction (XRD) with Rietveld refinement, and Scanning Electron Microscopy where carried out. On the subject of the electrical properties of the studied system, the samples showed a tendency to decrease values of breakdown electric field (from 6219.30 to 1155.72 Vcm(-1)) as the spinet content increased. Authors suggest the ceramic system may found application as medium-voltage varistors. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:738 / 744
页数:7
相关论文
共 50 条
  • [31] Nonlinear electrical properties of SnO2-Li2O-Nb2O5 varistor system
    Li, CP
    Wang, JF
    Su, WB
    Chen, HC
    Wang, WX
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2002, 18 (03) : 283 - 285
  • [32] Microstructure and Electrical Properties of Nd2O3-doped TiO2-Ta2O5-based Capacitor-varistor ceramics
    Wang, Tianguo
    Qin, Qun
    Zhou, Dongjian
    MATERIALS SCIENCE AND ENGINEERING APPLICATIONS, PTS 1-3, 2011, 160-162 : 348 - +
  • [33] Influence of Mn on Electronic Performance of SnO2-Sb2O3 Based Varistor
    Lu Zhenya
    Huang Huan
    Chen Zhiwu
    RARE METAL MATERIALS AND ENGINEERING, 2009, 38 : 928 - 931
  • [34] Microstructure and electrical properties of Y(NO3)3•6H2O-doped ZnO-Bi2O3-based varistor ceramics
    Xu, Dong
    Cheng, Xiaonong
    Yuan, Hongming
    Yang, Juan
    Lin, Yuanhua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (38) : 9312 - 9317
  • [35] Effect of high content of Co3O4 on the structure, morphology, and electrical properties of (Cr,Sb)-doped SnO2 varistors
    Aguilar-Martinez, J. A.
    Zambrano-Robledo, P.
    Garcia-Villarreal, S.
    Hernandez, M. B.
    Rodriguez, Eden
    Falcon-Franco, L.
    CERAMICS INTERNATIONAL, 2016, 42 (06) : 7576 - 7582
  • [36] Microstructure and Dielectric Properties of SnO2-doped CaCu3Ti4O12 Ceramics
    Xiang, Huiwen
    Chen, Zhenping
    Liu, Dewei
    Dai, Haiyang
    Li, Tao
    Zhang, Wenjing
    FERROELECTRICS, 2015, 474 (01) : 43 - 53
  • [37] Influence of Cr2O3 on the Residual Voltage Ratio of SnO2-Based Varistor
    Wei, Qiaoyuan
    He, Jinliang
    Hu, Jun
    Wang, Yunchao
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (07) : 1999 - 2002
  • [38] Effects of In2O3 doping on the microstructure and electrical properties of ZnO-V2O5-Nb2O5 varistor ceramics
    Roy, Tapatee Kundu
    CURRENT APPLIED PHYSICS, 2024, 65 : 32 - 40
  • [39] Microstructure and electrical properties of Dy2O3-doped ZnO-Bi2O3 based varistor ceramics
    Chen, Guo-hua
    Li, Ji-le
    Yang, Yun
    Yuan, Chang-lai
    Zhou, Chang-rong
    MATERIALS RESEARCH BULLETIN, 2014, 50 : 141 - 147
  • [40] Effects of the electric field on microstructure and electrical properties of ZnO-Bi2O3-Co2O3 varistor by flash sintering
    Shi, Mengyang
    Liu, Juan
    Li, Jiamao
    Xu, Jingrong
    Jiang, Ming
    Xu, Dong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (22) : 17900 - 17911