Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane

被引:39
作者
Corrias, L. [1 ]
Escobedo, M. [2 ,3 ]
Matos, J. [1 ]
机构
[1] Univ Evry Val Essonne, LaMME, F-91037 Evry, France
[2] Univ Basque Country, Fac Ciencia & Tecnol, Dept Math, E-48080 Bilbao, Spain
[3] BCAM, E-48009 Bilbao, Spain
关键词
Chemotaxis; Parabolic system; Keller-Segel system; Global solutions; Long time asymptotic behavior; Self-similar solutions; SELF-SIMILAR SOLUTIONS; LARGE TIME BEHAVIOR; GLOBAL EXISTENCE; MODEL;
D O I
10.1016/j.jde.2014.05.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present article we consider several issues concerning the doubly parabolic Keller-Segel system (1.1)-(1.2) in the plane, when the initial data belong to critical scaling-invariant Lebesgue spaces. More specifically, we analyze the global existence of integral solutions, their optimal time decay, uniqueness and positivity, together with the uniqueness of self-similar solutions. In particular, we prove that there exist integral solutions of any mass, provided that epsilon > 0 is sufficiently large. With those results at hand, we are then able to study the large time behavior of global solutions and prove that in the absence of the degradation term (alpha = 0) the solutions behave like self-similar solutions, while in the presence of the degradation term (alpha > 0) the global solutions behave like the heat kernel. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1840 / 1878
页数:39
相关论文
共 27 条
[1]  
BILER P, 2006, BANACH CTR PUBL, V74, P33
[2]  
Biler P., 1995, Appl. Math., V23, P179
[3]  
Biler P., ARXIV14017650
[4]  
Biler P., 1998, Adv. Math. Sci. Appl., V8, P715
[5]   The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane [J].
Biler, Piotr ;
Karch, Grzegorz ;
Laurencot, Philippe ;
Nadzieja, Tadeusz .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (13) :1563-1583
[6]   Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis [J].
Biler, Piotr ;
Corrias, Lucilla ;
Dolbeault, Jean .
JOURNAL OF MATHEMATICAL BIOLOGY, 2011, 63 (01) :1-32
[7]   On the parabolic-elliptic limit of the doubly parabolic Keller-Segel system modelling chemotaxis [J].
Biler, Piotr ;
Brandolese, Lorenzo .
STUDIA MATHEMATICA, 2009, 193 (03) :241-261
[8]  
Blanchet A., 2006, ELECT J DIFFERENTIAL, V44
[9]  
Blanchet A, 2008, COMMUN PUR APPL MATH, V61, P1449, DOI 10.1002/cpa.20225
[10]   Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model [J].
Blanchet, Adrien ;
Dolbeault, Jean ;
Escobedo, Miguel ;
Fernandez, Javier .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) :533-542