Equal opportunity networks, distance-balanced graphs, and Wiener game

被引:30
作者
Balakrishnan, Kannan [1 ]
Bresar, Bostjan [2 ,6 ]
Changat, Manoj [3 ]
Klavzar, Sandi [2 ,4 ,6 ]
Vesel, Aleksander [2 ,6 ]
Pletersek, Petra Zigert [5 ,6 ]
机构
[1] Cochin Univ Sci & Technol, Dept Comp Applicat, Cochin, Kerala, India
[2] Univ Maribor, Fac Nat Sci & Math, Maribor, Slovenia
[3] Univ Kerala, Dept Futures Studies, Trivandrum 695001, Kerala, India
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 61000, Slovenia
[5] Univ Maribor, Fac Chem & Chem Engn, Maribor, Slovenia
[6] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
Wiener index; Equal opportunity network; Distance-balanced graph; Wiener game; STAR-LIKE GRAPHS; INDEX; CONNECTIVITY;
D O I
10.1016/j.disopt.2014.01.002
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a graph G and a set X subset of V(G), the relative Wiener index of X in G is defined as W-x (G) = Sigma{u, upsilon}(is an element of) (x/2) d(G)(u, upsilon). The graphs G (of even order) in which for every partition V (G) = V-1 + V-2 of the vertex set V (G) such that vertical bar V-1 vertical bar = vertical bar V-2 vertical bar we have Wv(1) (G) = Wv(2) (G) are called equal opportunity graphs. In this note we prove that a graph G of even order is an equal opportunity graph if and only if it is a distance-balanced graph. The latter graphs are known by several characteristic properties, for instance, they are precisely the graphs Gin which all vertices u epsilon V (G) have the same total distance D-G(u) = Sigma(upsilon is an element of V(G)) d(G)(u, upsilon). Some related problems are posed along the way, and the so-called Wiener game is introduced. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:150 / 154
页数:5
相关论文
共 22 条
[1]   On a conjecture about the Szeged index [J].
Aouchiche, M. ;
Hansen, P. .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (07) :1662-1666
[2]   Strongly distance-balanced graphs and graph products [J].
Balakrishnan, Kannan ;
Changat, Manoj ;
Peterin, Iztok ;
Spacapan, Simon ;
Sparl, Primoz ;
Subhamathi, Ajitha R. .
EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) :1048-1053
[3]  
Cabello S, 2011, ELECTRON J COMB, V18
[4]   Average Distance and Vertex-Connectivity [J].
Dankelmann, Peter ;
Mukwembi, Simon ;
Swart, Henda C. .
JOURNAL OF GRAPH THEORY, 2009, 62 (02) :157-177
[5]   Wiener index of hexagonal systems [J].
Dobrynin, AA ;
Gutman, I ;
Klavzar, S ;
Zigert, P .
ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (03) :247-294
[6]   Wiener index of trees: Theory and applications [J].
Dobrynin, AA ;
Entringer, R ;
Gutman, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) :211-249
[7]  
Fraenkel A.S., 2012, ELECT J COMBIN DS, VDS2, P109
[8]   Terminal Wiener index [J].
Gutman, Ivan ;
Furtula, Boris ;
Petrovic, Miroslav .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 46 (02) :522-531
[9]  
Handa K, 1999, ARS COMBINATORIA, V51, P113
[10]  
Horvat B, 2008, MATCH-COMMUN MATH CO, V60, P493