Uniqueness and non-uniqueness of bounded solutions to singular nonlinear parabolic equations

被引:5
作者
Punzo, Fabio [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
关键词
Singular parabolic problems; Nonlinear diffusion; Well-posedness; WELL-POSEDNESS;
D O I
10.1016/j.na.2008.12.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate well-posedness of initial-boundary value problems for a class of nonlinear parabolic equations with variable density. At some part of the boundary, called singular boundary, the density can either vanish or diverge or not need to have a limit. We provide simple conditions for uniqueness or non-uniqueness of bounded solutions, depending on the behaviour of the density near the singular boundary. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3020 / 3029
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[2]  
[Anonymous], 1976, Probability and Mathematical Statistics
[3]   THE FILTRATION EQUATION IN A CLASS OF FUNCTIONS DECREASING AT INFINITY [J].
EIDUS, D ;
KAMIN, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :825-830
[4]  
Fichera G., 1956, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez., V5, P1
[5]   REGULARITY OF THE DISTANCE FUNCTION [J].
FOOTE, RL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 92 (01) :153-155
[6]  
GUIKHMAN I, 1977, INTRO THEORIE PROCES
[7]  
Kamin S., 1998, ATTI ACCAD NAZ SFMN, V9, P279
[8]   ADMISSIBLE CONDITIONS FOR PARABOLIC EQUATIONS DEGENERATING AT INFINITY [J].
Kamin, Sh. ;
Pozio, M. A. ;
Tesei, A. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2008, 19 (02) :239-251
[9]   Well-posedness of initial value problems for singular parabolic equations [J].
Kersner, R ;
Tesei, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) :47-76
[10]  
MATANO H, 1997, 8 MAT U SAP