Pseudo-merohedral twinning in monoclinic crystals of wild-type human brain neuroglobin

被引:13
|
作者
Hamdane, Djemel [1 ]
Lechauve, Christophe [2 ]
Marden, Michael C. [2 ]
Golinelli-Pimpaneau, Beatrice [1 ]
机构
[1] CNRS, Lab Enzymol & Biochim Struct, F-91190 Gif Sur Yvette, France
[2] Univ Paris 11, INSERM, U779, F-94275 Le Kremlin Bicetre, France
关键词
DISULFIDE BOND; FORM; DIFFRACTION; SYMMETRY; PROTEIN;
D O I
10.1107/S0907444909003382
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The purification, crystallization and successful structure determination by molecular replacement of wild-type human brain neuroglobin at 1.8 angstrom resolution is reported. The apparent space group was orthorhombic C222(1), but the real space group was monoclinic P2(1), which resulted from twinning. Indeed, the unit-cell parameters, a = 31.2, b = 139.1, c = 31.2 angstrom, beta = 102 degrees, display a fortuitously close to c and twinning by the operator l, -k, h occurs. Twinning was not evident from the initial analysis of intensity distribution, but pseudo-merohedral twinning was revealed by the Padilla and Yeates test based on local intensity differences. A twinning fraction of 0.5 was determined in SHELXL, indicating a perfect hemihedrally twinned crystal. To date, this type of twinning has been reported in more than ten structures, which makes it quite a common case in proteins.
引用
收藏
页码:388 / 392
页数:5
相关论文
共 50 条
  • [31] Wild-type and attenuated influenza virus infection of the neonatal rat brain
    Steven A. Rubin
    Dong Liu
    Mikhail Pletnikov
    Jonathan A. McCullers
    Zhiping Ye
    Roland A. Levandowski
    Jan Johannessen
    Kathryn M. Carbone
    Journal of NeuroVirology, 2004, 10 : 305 - 314
  • [32] Wild-type huntingtin plays a role in brain development and neuronal survival
    Anton Reiner
    Ioannis Dragatsis
    Scott Zeitlin
    Daniel Goldowitz
    Molecular Neurobiology, 2003, 28 : 259 - 275
  • [33] IMAGING MASS SPECTROMETRY OF THE BRAIN OF PACAP DEFICIENT AND WILD-TYPE MICE
    Rivnyak, A.
    Maasz, G.
    Reglodi, D.
    Schmidt, J.
    Pirger, Zs
    Mihalik, A.
    Kiss, P.
    Gaszner, B.
    Tamas, A.
    Hashimoto, H.
    Mark, L.
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2013, 51 : S227 - S228
  • [34] Locomotor differences in mice expressing wild-type human α-synuclein
    Giraldo, Genesys
    Brooks, Mieu
    Giasson, Benoit I.
    Janus, Christopher
    NEUROBIOLOGY OF AGING, 2018, 65 : 140 - 148
  • [35] Wild-type huntingtin plays a role in brain development and neuronal survival
    Reiner, A
    Dragatsis, I
    Zeitlin, S
    Goldowitz, D
    MOLECULAR NEUROBIOLOGY, 2003, 28 (03) : 259 - 275
  • [36] Learning as a Functional State of the Brain: Studies in Wild-Type and Transgenic Animals
    Delgado-Garcia, Jose M.
    Gruart, Agnes
    PLASTIC BRAIN, 2017, 1015 : 75 - 93
  • [37] Wild-type and attenuated influenza virus infection of the neonatal rat brain
    Rubin, SA
    Liu, D
    Pletnikov, M
    McCullers, JA
    Ye, ZP
    Levandowski, RA
    Johannessen, J
    Carbone, KM
    JOURNAL OF NEUROVIROLOGY, 2004, 10 (05) : 305 - 314
  • [38] ELECTROSTATIC INTERACTIONS IN WILD-TYPE AND MUTANT RECOMBINANT HUMAN MYOGLOBINS
    VARADARAJAN, R
    LAMBRIGHT, DG
    BOXER, SG
    BIOCHEMISTRY, 1989, 28 (09) : 3771 - 3781
  • [39] Ligand modulation of sidechain dynamics in a wild-type human GPCR
    Clark, Lindsay D.
    Dikiy, Igor
    Chapman, Karen
    Rodstrom, Karin E. J.
    Aramini, James
    LeVine, Michael V.
    Khelashvili, George
    Rasmussen, Soren G. F.
    Gardner, Kevin H.
    Rosebaum, Daniel M.
    ELIFE, 2017, 6
  • [40] Photoperiodic responses of behavior and the brain monoamines in obese AY/a and wild-type a/a mice
    Bazhenova, E.
    Khotskin, N.
    Sorokin, I.
    Fursenko, D.
    Kulikov, A.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S275 - S275