(Zn, Mg)O/ZnO-based heterostructures grown by molecular beam epitaxy on sapphire: Polar vs. non-polar

被引:22
作者
Chauveau, J. -M. [1 ,2 ]
Morhain, C. [1 ]
Teisseire, M. [1 ]
Lauegt, M. [1 ]
Deparis, C. [1 ]
Zuniga-Perez, J. [1 ,2 ]
Vinter, B. [1 ,2 ]
机构
[1] CRHA CNRS, F-06560 Valbonne, Sophia Antipoli, France
[2] Univ Nice Sophia Antipolis, Dept Phys, F-06103 Nice, France
关键词
ZnO; Non-polar; Quantum wells; QUANTUM-WELL HETEROSTRUCTURES; ZNO; (0001)-SAPPHIRE; ALLOYS; MODES; LASER;
D O I
10.1016/j.mejo.2008.06.067
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Zinc oxide (ZnO) has recently attracted considerable attention because of its unique physical properties and its potential applications in the blue and UV spectral range. Up to now, ZnO-based heterostructures have mostly been grown in a c-orientation. The growth of non-polar layers along the a-direction [11 (2) over bar0] has been proposed to avoid any built-in electric fields in the c-direction. Polar and non-polar quantum wells (QWs) embedded in (Zn, Mg)O barriers were grown on an optimized buffer. We compare the photoluminescence (PL) emission of a- and c-oriented QWs. From this comparison, we demonstrate that the QWs exhibit confinement but no indication of quantum confined Stark effect, contrary to what is observed in c-oriented structures. In the non-polar orientation, it is shown that the thermal quenching is not related to the thermal escape of excitons from the ZnO area, since the calculated activation energies are much lower. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:512 / 516
页数:5
相关论文
共 20 条
[1]   Infrared dielectric functions and phonon modes of wurtzite MgxZn1-xO (x≤0.2) [J].
Bundesmann, C ;
Schubert, M ;
Spemann, D ;
Butz, T ;
Lorenz, M ;
Kaidashev, EM ;
Grundmann, M ;
Ashkenov, N ;
Neumann, H ;
Wagner, G .
APPLIED PHYSICS LETTERS, 2002, 81 (13) :2376-2378
[2]   Growth and characterization of A-plane ZnO and ZnCoO based heterostructures [J].
Chauveau, J.-M. ;
Morhain, C. ;
Lo, B. ;
Vinter, B. ;
Vennegues, P. ;
Lauegt, M. ;
Buell, D. ;
Tesseire-Doninelli, M. ;
Neu, G. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 88 (01) :65-69
[3]   Non-polar a-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy [J].
Chauveau, J-M ;
Laugt, M. ;
Vennegues, P. ;
Teisseire, M. ;
Lo, B. ;
Deparis, C. ;
Morhain, C. ;
Vinter, B. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2008, 23 (03)
[4]   Excitonic transitions in ZnO/MgZnO quantum well heterostructures [J].
Coli, G ;
Bajaj, KK .
APPLIED PHYSICS LETTERS, 2001, 78 (19) :2861-2863
[5]   Spin-exchange interaction in ZnO-based quantum wells [J].
Gil, B. ;
Lefebvre, P. ;
Bretagnon, T. ;
Guillet, T. ;
Sans, J. A. ;
Taliercio, T. ;
Morhain, C. .
PHYSICAL REVIEW B, 2006, 74 (15)
[6]   ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region [J].
Gruber, T ;
Kirchner, C ;
Kling, R ;
Reuss, F ;
Waag, A .
APPLIED PHYSICS LETTERS, 2004, 84 (26) :5359-5361
[7]   SIMPLE METHOD FOR CALCULATING EXCITON BINDING-ENERGIES IN QUANTUM-CONFINED SEMICONDUCTOR STRUCTURES [J].
LEAVITT, RP ;
LITTLE, JW .
PHYSICAL REVIEW B, 1990, 42 (18) :11774-11783
[8]   Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells [J].
Leroux, M ;
Grandjean, N ;
Laügt, M ;
Massies, J ;
Gil, B ;
Lefebvre, P ;
Bigenwald, P .
PHYSICAL REVIEW B, 1998, 58 (20) :13371-13374
[9]   Luminescence from stacking faults in gallium nitride [J].
Liu, R ;
Bell, A ;
Ponce, FA ;
Chen, CQ ;
Yang, JW ;
Khan, MA .
APPLIED PHYSICS LETTERS, 2005, 86 (02) :021908-1
[10]   Optical properties of excitons in ZnO-based quantum well heterostructures [J].
Makino, T ;
Segawa, Y ;
Kawasaki, M ;
Koinuma, H .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2005, 20 (04) :S78-S91