Rate Analysis of Inexact Dual First-Order Methods Application to Dual Decomposition

被引:78
作者
Necoara, Ion [1 ]
Nedelcu, Valentin [1 ]
机构
[1] Univ Politehn Bucuresti, Automat Control & Syst Engn Dept, Bucharest 060042, Romania
关键词
Convergence rate; dual decomposition; inexact dual gradient methods; suboptimality and infeasibility estimates; MODEL-PREDICTIVE CONTROL; SUBGRADIENT; RELAXATION; ALGORITHM;
D O I
10.1109/TAC.2013.2294614
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose and analyze two dual methods based on inexact gradient information and averaging that generate approximate primal solutions for smooth convex problems. The complicating constraints are moved into the cost using the Lagrange multipliers. The dual problem is solved by inexact first-order methods based on approximate gradients for which we prove sublinear rate of convergence. In particular, we provide a complete rate analysis and estimates on the primal feasibility violation and primal and dual suboptimality of the generated approximate primal and dual solutions. Moreover, we solve approximately the inner problems with a linearly convergent parallel coordinate descent algorithm. Our analysis relies on the Lipschitz property of the dual function and inexact dual gradients. Further, we combine these methods with dual decomposition and constraint tightening and apply this framework to linear model predictive control obtaining a suboptimal and feasible control scheme.
引用
收藏
页码:1232 / 1243
页数:12
相关论文
共 26 条
[1]   A comparative analysis of distributed MPC techniques applied to the HD-MPC four-tank benchmark [J].
Alvarado, I. ;
Limon, D. ;
Munoz de la Pena, D. ;
Maestre, J. M. ;
Ridao, M. A. ;
Scheu, H. ;
Marquardt, W. ;
Negenborn, R. R. ;
De Schutter, B. ;
Valencia, F. ;
Espinosa, J. .
JOURNAL OF PROCESS CONTROL, 2011, 21 (05) :800-815
[2]  
[Anonymous], 2013, Introductory lectures on convex optimization: A basic course
[3]  
Bertsekas D. P., 1989, PARALEL DISTRIBUTED
[4]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[5]   Distributed Optimization for Model Predictive Control of Linear-Dynamic Networks [J].
Camponogara, Eduardo ;
de Oliveira, Lucas Barcelos .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2009, 39 (06) :1331-1338
[6]   Distributed model predictive control: A tutorial review and future research directions [J].
Christofides, Panagiotis D. ;
Scattolini, Riccardo ;
Munoz de la Pena, David ;
Liu, Jinfeng .
COMPUTERS & CHEMICAL ENGINEERING, 2013, 51 :21-41
[7]  
Connejo A., 2006, Decomposition Techniques_in_Mathematical_Programming:_Engineering_and_Science_Applications
[8]   First-order methods of smooth convex optimization with inexact oracle [J].
Devolder, Olivier ;
Glineur, Francois ;
Nesterov, Yurii .
MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) :37-75
[9]  
DOAN MD, 2011, P 50 IEEE C DEC CONT, P5236
[10]   Distributed predictive control: A non-cooperative algorithm with neighbor-to-neighbor communication for linear systems [J].
Farina, Marcello ;
Scattolini, Riccardo .
AUTOMATICA, 2012, 48 (06) :1088-1096