This work presents a hybrid model that combines support vector regression (SVR), empirical mode decomposition (EMD), the krill herd (KH) algorithm and a chaotic mapping function. EMD is used to decompose input time series data into components with several intrinsic mode functions (IMFs) and one residual, to capture the trends in the input data. SVR is used to forecast separately IMFs and the residual owing to its effectiveness in solving nonlinear regression and time series problems. The KH algorithm is used to select the parameters in the SVR models. The Tent chaotic mapping function is hybridized with the KH algorithm to prevent premature convergence and increase the accuracy of the whole model. Two real-world datasets from the New South Wales (NSW, Australia) market and the New York Independent System Operator (NYISO, USA) are used to demonstrate the performance of the proposed EMD-SVRCKH model. The experimental results reveal that the proposed model provides competitive advantages over other models and offers greater forecasting accuracy. (C) 2020 Elsevier B.V. All rights reserved.
机构:
Zhengzhou Univ, Sch Water Conservancy & Transportat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ, Sch Water Conservancy & Transportat, Zhengzhou 450001, Peoples R China
Ling, Minhua
Hu, Xiaoyue
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Water Conservancy & Transportat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ, Sch Water Conservancy & Transportat, Zhengzhou 450001, Peoples R China
Hu, Xiaoyue
Yu, Jiangbo
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Water Conservancy & Transportat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ, Sch Water Conservancy & Transportat, Zhengzhou 450001, Peoples R China
Yu, Jiangbo
Lv, Cuimei
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Water Conservancy & Transportat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ, Sch Water Conservancy & Transportat, Zhengzhou 450001, Peoples R China
机构:
Jiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R ChinaJiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R China
Xia, Zhaowang
Mao, Kaijie
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R ChinaJiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R China
Mao, Kaijie
Wei, Shoubei
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R ChinaJiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R China
Wei, Shoubei
Wang, Xuetao
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R ChinaJiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R China
Wang, Xuetao
Fang, Yuanyuan
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R ChinaJiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R China
Fang, Yuanyuan
Yang, Shaopu
论文数: 0引用数: 0
h-index: 0
机构:
Shijiazhuang Tiedao Univ, Sch Mech Engn, Shijiazhuang, Peoples R ChinaJiangsu Univ Sci & Technol, Sch Energy & Power Engn, Zhenjiang 212003, Peoples R China