A support vector regression model hybridized with chaotic krill herd algorithm and empirical mode decomposition for regression task

被引:90
|
作者
Zhang, Zichen [1 ]
Ding, Shifei [1 ,2 ]
Sun, Yuting [1 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 21116, Jiangsu, Peoples R China
[2] Minist Educ Peoples Republ China, Mine Digitizat Engn Res Ctr, Xuzhou 221116, Jiangsu, Peoples R China
关键词
Support vector regression (SVR); Empirical mode decomposition (EMD); Krill herd (KH) algorithm; Tent chaotic mapping function; OPTIMIZATION;
D O I
10.1016/j.neucom.2020.05.075
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents a hybrid model that combines support vector regression (SVR), empirical mode decomposition (EMD), the krill herd (KH) algorithm and a chaotic mapping function. EMD is used to decompose input time series data into components with several intrinsic mode functions (IMFs) and one residual, to capture the trends in the input data. SVR is used to forecast separately IMFs and the residual owing to its effectiveness in solving nonlinear regression and time series problems. The KH algorithm is used to select the parameters in the SVR models. The Tent chaotic mapping function is hybridized with the KH algorithm to prevent premature convergence and increase the accuracy of the whole model. Two real-world datasets from the New South Wales (NSW, Australia) market and the New York Independent System Operator (NYISO, USA) are used to demonstrate the performance of the proposed EMD-SVRCKH model. The experimental results reveal that the proposed model provides competitive advantages over other models and offers greater forecasting accuracy. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 50 条
  • [1] Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting
    Hong, Wei-Chiang
    Fan, Guo-Feng
    ENERGIES, 2019, 12 (06):
  • [2] A Novel Empirical Mode Decomposition With Support Vector Regression for Wind Speed Forecasting
    Ren, Ye
    Suganthan, Ponnuthurai Nagaratnam
    Srikanth, Narasimalu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (08) : 1793 - 1798
  • [3] Estimation of solar radiation using neighboring stations through hybrid support vector regression boosted by Krill Herd algorithm
    Mohammadi, Babak
    Aghashariatmadari, Zahra
    ARABIAN JOURNAL OF GEOSCIENCES, 2020, 13 (10)
  • [4] Elimination of end effects in empirical mode decomposition by mirror image coupled with support vector regression
    Lin, Da-Chao
    Guo, Zhang-Lin
    An, Feng-Ping
    Zeng, Fan-Lei
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2012, 31 : 13 - 28
  • [5] A Hybrid Seasonal Mechanism with a Chaotic Cuckoo Search Algorithm with a Support Vector Regression Model for Electric Load Forecasting
    Dong, Yongquan
    Zhang, Zichen
    Hong, Wei-Chiang
    ENERGIES, 2018, 11 (04)
  • [6] Electric Load Forecasting by Hybrid Self-Recurrent Support Vector Regression Model With Variational Mode Decomposition and Improved Cuckoo Search Algorithm
    Zhang, Zichen
    Hong, Wei-Chiang
    Li, Junchi
    IEEE ACCESS, 2020, 8 : 14642 - 14658
  • [7] Reverse adaptive krill herd locally weighted support vector regression for forecasting and trading exchange traded funds
    Sermpinis, Georgios
    Stasinakis, Charalampos
    Hassanniakalager, Arman
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2017, 263 (02) : 540 - 558
  • [8] Krill-Herd Support Vector Regression and heterogeneous autoregressive leverage: evidence from forecasting and trading commodities
    Stasinakis, Charalampos
    Sermpinis, Georgios
    Psaradellis, Ioannis
    Verousis, Thanos
    QUANTITATIVE FINANCE, 2016, 16 (12) : 1901 - 1915
  • [9] Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts
    Ali, Mumtaz
    Prasad, Ramendra
    Xiang, Yong
    Yaseen, Zaher Mundher
    JOURNAL OF HYDROLOGY, 2020, 584
  • [10] Support Vector Regression with Chaotic Hybrid Algorithm in Cyclic Electric Load Forecasting
    Hong, Wei-Chiang
    Dong, Yucheng
    Chen, Li-Yueh
    Panigrahi, B. K.
    Wei, Shih-Yung
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2011), VOL 1, 2012, 130 : 833 - +