Wong's equations in Yang-Mills theory

被引:3
|
作者
Storchak, Sergey N. [1 ]
机构
[1] Inst High Energy Phys, Protvino 142284, Moscow Region, Russia
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2014年 / 12卷 / 04期
关键词
Yang-Mills theory; Marsden-Weinstein reduction; Kaluza-Klein theories; Wong's equation; KALUZA-KLEIN THEORY; GAUGE-FIELDS; PATH-INTEGRALS; GEOMETRY; REDUCTION; SPACE; PARTICLES; MANIFOLD; MOTIONS;
D O I
10.2478/s11534-014-0439-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Wong's equations for the finite-dimensional dynamical system representing the motion of a scalar particle on a compact Riemannian manifold with a given free isometric smooth action of a compact semi-simple Lie group are derived. The equations obtained are written in terms of dependent coordinates which are typically used in an implicit description of the local dynamics given on the orbit space of the principal fiber bundle. Using these equations, we obtain Wong's equations in a pure Yang-Mills gauge theory with Coulomb gauge fixing. This result is based on the existing analogy between the reduction procedures performed in a finite-dimensional dynamical system and the reduction procedure in Yang-Mills gauge fields.
引用
收藏
页码:233 / 244
页数:12
相关论文
共 50 条
  • [31] Hamiltonian approach to Yang-Mills theory in Coulomb gauge
    Reinhardt, H.
    Epple, D.
    Schleifenbaum, W.
    QUARK CONFINEMENT AND THE HADRON SPECTRUM VII, 2007, 892 : 93 - +
  • [32] Center projection vortices in continuum Yang-Mills theory
    Engelhardt, M
    Reinhardt, H
    NUCLEAR PHYSICS B, 2000, 567 (1-2) : 249 - 292
  • [33] Twin supergravities from Yang-Mills theory squared
    Anastasiou, A.
    Borsten, L.
    Duff, M. J.
    Hughes, M. J.
    Marrani, A.
    Nagy, S.
    Zoccali, M.
    PHYSICAL REVIEW D, 2017, 96 (02)
  • [34] Infrared Yang-Mills theory: A renormalization group perspective
    Weber, Axel
    Dall'Olio, Pietro
    Astorga, Francisco
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2016, 25 (07):
  • [35] Quantization of Yang-Mills theory without the Gribov ambiguity
    Zhou, Gao-Liang
    Yan, Zheng-Xin
    Zhang, Xin
    PHYSICS LETTERS B, 2017, 766 : 231 - 237
  • [36] Gauge invariant geometric variables for Yang-Mills theory
    Haagensen, PE
    Johnson, K
    Lam, CS
    NUCLEAR PHYSICS B, 1996, 477 (01) : 273 - 292
  • [37] Regular solutions in f(T)-Yang-Mills theory
    DeBenedictis, Andrew
    Ilijic, Sasa
    PHYSICAL REVIEW D, 2018, 98 (06)
  • [38] Towards the fundamental spectrum of the quantum Yang-Mills theory
    Liegener, Klaus
    Thiemann, Thomas
    PHYSICAL REVIEW D, 2016, 94 (02)
  • [39] Fiber bundles, Yang-Mills theory, and general relativity
    Weatherall, James Owen
    SYNTHESE, 2016, 193 (08) : 2389 - 2425
  • [40] Digital quantum simulation of hadronization in Yang-Mills theory
    Li, De-Sheng
    Wu, Chun-Wang
    Zhong, Ming
    Wu, Wei
    Chen, Ping-Xing
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2020, 18 (06)