Numerical study on knock characteristics and mechanism of a heavy duty natural gas/diesel RCCI engine

被引:13
|
作者
Zhou, Weijian [1 ]
Xi, Hongyuan [1 ]
Zhou, Song [1 ]
Zhang, Zhao [1 ]
Shreka, Majed [1 ]
机构
[1] Harbin Engn Univ, Coll Power & Energy Engn, Harbin 150001, Peoples R China
关键词
Knock characteristics; Natural gas; RCCI engine; Dual fuel; Knock mechanism; CHEMICAL KINETICS APPROACH; IGNITION ENGINE; COMBUSTION; GAS; HYDROGEN; METHANOL; EMISSIONS;
D O I
10.1016/j.ijhydene.2022.08.263
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, the knock phenomenon of reactivity controlled compression ignition (RCCI) engine fueled with natural gas/diesel was numerically studied. The knock mechanism of the RCCI engine is explained and the strategy of suppressing knock is put forward. The knock characteristics were studied by setting monitoring points in different spaces posi-tions of the cylinder. The results show that the pressure oscillation amplitude at the center and edge of the cylinder is large under the high load condition of RCCI engine. In addition, the knock mechanism was studied by using pressure difference method, maximum amplitude of pressure oscillation, important components, temperature isosurface, pres-sure fluctuation and heat release rate. The results show that the knock of RCCI engine is mainly caused by the end-gas auto-ignition. The pressure difference results show that the characteristic frequency is consistent with the natural resonance mode (0,1) of the cylin-drical combustion chamber. On this basis, the effects of pilot oil injection timing and compression ratio on engine knock are further studied. It is confirmed that diesel knock and end-gas knock may exist simultaneously in the same cycle when RCCI engine knock occurs. And diesel knock occurs before top dead center, and end-gas knock occurs after top dead center. Proper adjustment of pilot oil injection timing and reduction of compression ratio can effectively suppress engine knock.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:37072 / 37089
页数:18
相关论文
共 50 条
  • [1] A Numerical Study on the Combustion and Emissions Characteristics of a Heavy Duty Natural Gas/Diesel RCCI Engine
    Zhou, Weijian
    Zhou, Song
    Xi, Hongyuan
    Shreka, Majed
    Zhang, Zhao
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2023, 145 (05):
  • [2] Numerical study on the combustion characteristics of diesel-natural gas RCCI engine
    Zhang Z.
    Shao C.
    Li G.
    Liang J.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48 (07): : 59 - 64
  • [3] Effect of diesel injection strategies on natural gas/diesel RCCI combustion characteristics in a light duty diesel engine
    Poorghasemi, Kamran
    Saray, Rahim Khoshbakhti
    Ansari, Ehsan
    Irdmousa, Behrouz Khoshbakht
    Shahbakhti, Mehdi
    Naber, Jeffery D.
    APPLIED ENERGY, 2017, 199 : 430 - 446
  • [4] Study on the Combustion and Emission Characteristic of a Heavy-Duty Natural Gas/Ammonia RCCI Engine with Diesel Ignition
    Zhou, Weijian
    Wang, Hongnan
    Zhou, Song
    Shreka, Majed
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2024, 2024
  • [5] Study on Combustion Characteristics of Diesel/Natural Gas/Hydrogen RCCI Engine
    Qin, Wenjin
    Xu, Lihui
    Cheng, Qiang
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2023, 145 (02):
  • [6] A numerical study of the effects of using hydrogen, reformer gas and nitrogen on combustion, emissions and load limits of a heavy duty natural gas/diesel RCCI engine
    Rahnama, Pourya
    Paykani, Amin
    Reitz, Rolf D.
    APPLIED ENERGY, 2017, 193 : 182 - 198
  • [7] Heavy-Duty RCCI Operation Using Natural Gas and Diesel
    Nieman, Derek E.
    Dempsey, Adam B.
    Reitz, Rolf D.
    SAE INTERNATIONAL JOURNAL OF ENGINES, 2012, 5 (02) : 270 - 285
  • [8] A numerical study of piston bowl geometry and diesel injection timing in a heavy-duty diesel/syngas RCCI engine
    Seddiq, Mahdi
    Delprete, Cristiana
    Brusa, Eugenio
    Razavykia, Abbas
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2023, 24 (08) : 3795 - 3814
  • [9] Experimental Investigation of Natural Gas-Diesel Dual-Fuel RCCI in a Heavy-Duty Engine
    Jia, Zhiqin
    Denbratt, Ingemar
    SAE INTERNATIONAL JOURNAL OF ENGINES, 2015, 8 (02) : 797 - 807
  • [10] Hydrogen energy share enhancement in a heavy duty diesel engine under RCCI combustion fueled with natural gas and diesel oil
    Rahimi, Hadi Mabadi
    Jazayeri, Seyed Ali
    Ebrahimi, Mojtaba
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (35) : 17975 - 17991