Dynamics of spiral waves in the complex Ginzburg-Landau equation in bounded domains

被引:5
|
作者
Aguareles, M. [1 ]
Chapman, S. J. [2 ]
Witelski, T. [3 ]
机构
[1] Univ Girona, IMAE, Ed P4,Campus Montilivi, Girona 17003, Spain
[2] Univ Oxford, Math Inst, Andrew Wiles Bldg,ROQ Woodstock Rd, Oxford OX2 6GG, England
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
关键词
Law of motion; Asymptotic; Pattern formation; Nonlinear oscillation; Spiral waves; Complex Ginzburg-Landau equation;
D O I
10.1016/j.physd.2020.132699
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multiple-spiral-wave solutions of the general cubic complex Ginzburg-Landau equation in bounded domains are considered. We investigate the effect of the boundaries on spiral motion under homogeneous Neumann boundary conditions, for small values of the twist parameter q. We derive explicit laws of motion for rectangular domains and we show that the motion of spirals becomes exponentially slow when the twist parameter exceeds a critical value depending on the size of the domain. The oscillation frequency of multiple-spiral patterns is also analytically obtained. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Motion of spiral waves in the complex Ginzburg-Landau equation
    Aguareles, M.
    Chapman, S. J.
    Witelski, T.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (07) : 348 - 365
  • [2] Resonant Drift of Spiral Waves in the Complex Ginzburg-Landau Equation
    Irina V. Biktasheva
    Yury E. Elkin
    Vadim N. Biktashev
    Journal of Biological Physics, 1999, 25 : 115 - 127
  • [3] Resonant drift of spiral waves in the complex Ginzburg-Landau equation
    Biktasheva, IV
    Elkin, YE
    Biktashev, VN
    JOURNAL OF BIOLOGICAL PHYSICS, 1999, 25 (2-3) : 115 - 128
  • [4] Spiral wave dynamics in the complex Ginzburg-Landau equation with broken chiral symmetry
    Nam, K
    Ott, E
    Gabbay, M
    Guzdar, PN
    PHYSICA D, 1998, 118 (1-2): : 69 - 83
  • [5] Local well-posedness of the complex Ginzburg-Landau equation in bounded domains
    Kuroda, Takanori
    Otani, Mitsuharu
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 877 - 894
  • [6] TRAVELING WAVES IN THE COMPLEX GINZBURG-LANDAU EQUATION
    DOELMAN, A
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (02) : 225 - 266
  • [7] Standing waves of the complex Ginzburg-Landau equation
    Cazenave, Thierry
    Dickstein, Flavio
    Weissler, Fred B.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 103 : 26 - 32
  • [8] Numerical study of quantized vortex interaction in complex Ginzburg-Landau equation on bounded domains
    Jiang, Wei
    Tang, Qinglin
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 : 210 - 230
  • [9] Phase dynamics in the complex Ginzburg-Landau equation
    Melbourne, I
    Schneider, G
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) : 22 - 46
  • [10] DYNAMICS OF VORTICES FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Miot, Evelyne
    ANALYSIS & PDE, 2009, 2 (02): : 159 - 186