Hamilton's gradient estimate for fast diffusion equations under geometric flow

被引:1
作者
Fasihi-Ramandi, Ghodratallah [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin, Iran
来源
AIMS MATHEMATICS | 2019年 / 4卷 / 03期
关键词
fast diffusion equation; Ricci flow; Hamilton inequality; gradient estimates; HEAT-EQUATION; POSITIVE SOLUTIONS;
D O I
10.3934/math.2019.3.497
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that M is a complete noncompact Riemannian manifold of dimension n. In the present paper, we obtain a Hamilton's gradient estimate for positive solutions of the fast diffusion equations partial derivative u/partial derivative t = Delta u(m), 1 - 4/n + 8 < m < 1 on M x (-infinity, 0] under the geometric flow.
引用
收藏
页码:497 / 505
页数:9
相关论文
共 10 条
[1]   Gradient estimates for the heat equation under the Ricci flow [J].
Bailesteanu, Mihai ;
Cao, Xiaodong ;
Pulemotov, Artem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3517-3542
[2]  
Evangelista L.R., 2018, Fractional Diffusion Equations and Anomalous Diffusion
[3]   A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow [J].
Kuang, Shilong ;
Zhang, Qi S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) :1008-1023
[4]   Hamilton's gradient estimates for fast diffusion equations under the Ricci flow [J].
Li, Hailong ;
Bai, Haibo ;
Zhang, Guangying .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) :1372-1379
[5]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[6]   GRADIENT ESTIMATES FOR SOLUTIONS OF THE HEAT EQUATION UNDER RICCI FLOW [J].
Liu, Shiping .
PACIFIC JOURNAL OF MATHEMATICS, 2009, 243 (01) :165-180
[7]   Nonlinear Kramers equation associated with nonextensive statistical mechanics [J].
Mendes, G. A. ;
Ribeiro, M. S. ;
Mendes, R. S. ;
Lenzi, E. K. ;
Nobre, F. D. .
PHYSICAL REVIEW E, 2015, 91 (05)
[8]   GRADIENT ESTIMATES FOR POSITIVE SOLUTIONS OF THE HEAT EQUATION UNDER GEOMETRIC FLOW [J].
Sun, Jun .
PACIFIC JOURNAL OF MATHEMATICS, 2011, 253 (02) :489-510
[9]   Anomalous diffusion in the presence of external forces: Exact time-dependent solutions and their thermostatistical basis [J].
Tsallis, C ;
Bukman, DJ .
PHYSICAL REVIEW E, 1996, 54 (03) :R2197-R2200
[10]  
Vzquez J. L., 2006, OXFORD LECT SER MATH, V33