Improving the Selectivity of Engineered Protease Inhibitors: Optimizing the P2 Prime Residue Using a Versatile Cyclic Peptide Library

被引:43
作者
de Veer, Simon J. [1 ]
Wang, Conan K. [2 ]
Harris, Jonathan M. [1 ]
Craik, David J. [2 ]
Swedberg, Joakim E. [2 ]
机构
[1] Queensland Univ Technol, Inst Hlth & Biomed Innovat, Brisbane, Qld 4059, Australia
[2] Univ Queensland, Inst Mol Biosci, Queensland Biosci Presinct, Brisbane, Qld 4072, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
SUNFLOWER TRYPSIN INHIBITOR-1; TRANSMEMBRANE SERINE-PROTEASE; MATRIPTASE INHIBITORS; PROTEINASE-INHIBITOR; MOLECULAR-DYNAMICS; PHAGE DISPLAY; KALLIKREIN; POTENT; SPECIFICITY; MECHANISM;
D O I
10.1021/acs.jmedchem.5b01148
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Standard mechanism inhibitors are attractive design templates for engineering reversible serine protease inhibitors. When optimizing interactions between the inhibitor and target protease, many studies focus on the nonprimed segment of the inhibitor's binding loop (encompassing the contact beta-strand). However, there are currently few methods for screening residues on the primed segment. Here, we designed a synthetic inhibitor library (based on sunflower trypsin inhibitorI) for characterizing the P2' specificity of various serine proteases. Screening the library against 13 different proteases revealed unique P2' preferences for trypsin, ch-ymotrypsin, matriptase, plasmin, thrombin, four kallikrein-related peptidases, and several clotting factors. Using this information to modify existing engineered inhibitors yielded new variants that showed considerably improved selectivity, reaching up to 7000-fold selectivity over certain off-target proteases. Our study demonstrates the importance of the P2' residue in standard mechanism inhibition and unveils a new approach for screening P2' substitutions that will benefit future inhibitor engineering studies.
引用
收藏
页码:8257 / 8268
页数:12
相关论文
共 62 条
[11]   Proteases: common culprits in human skin disorders [J].
de Veer, Simon J. ;
Furio, Laetitia ;
Harris, Jonathan M. ;
Hovnanian, Alain .
TRENDS IN MOLECULAR MEDICINE, 2014, 20 (03) :166-178
[12]   Mechanism-Based Selection of a Potent Kallikrein-Related Peptidase 7 Inhibitor From a Versatile Library Based on the Sunflower Trypsin Inhibitor SFTI-1 [J].
de Veer, Simon J. ;
Ukolova, Svetlana S. ;
Munro, Christopher A. ;
Swedberg, Joakim E. ;
Buckle, Ashley M. ;
Harris, Jonathan M. .
BIOPOLYMERS, 2013, 100 (05) :510-518
[13]  
de Veer SJ, 2012, BIOL CHEM, V393, P331, DOI [10.1515/BC-2011-250, 10.1515/bc-2011-250]
[14]   Aprotinin revisited [J].
DeAnda, Abe, Jr. ;
Spiess, Bruce D. .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2012, 144 (05) :998-1002
[15]   Specificity profiling of seven human tissue kallikreins reveals individual subsite preferences [J].
Debela, Mekdes ;
Magdolen, Viktor ;
Schechter, Norman ;
Valachova, Martina ;
Lottspeich, Friedrich ;
Craik, Charles S. ;
Choe, Youngchool ;
Bode, Wolfram ;
Goettig, Peter .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (35) :25678-25688
[16]   Drug therapy -: Direct thrombin inhibitors [J].
Di Nisio, M ;
Middeldorp, S ;
Büller, HR .
NEW ENGLAND JOURNAL OF MEDICINE, 2005, 353 (10) :1028-1040
[17]   Emerging principles in protease-based drug discovery [J].
Drag, Marcin ;
Salvesen, Guy S. .
NATURE REVIEWS DRUG DISCOVERY, 2010, 9 (09) :690-701
[18]   Managing Fibrinolysis Without Aprotinin [J].
Edmunds, L. Henry, Jr. .
ANNALS OF THORACIC SURGERY, 2010, 89 (01) :324-331
[19]  
FINKENSTADT WR, 1967, J BIOL CHEM, V242, P771
[20]  
FINKENSTADT WR, 1965, J BIOL CHEM, V240, pP962