Traffic Sign Recognition Using Perturbation Method

被引:0
作者
Huang, Linlin [1 ]
Yin, Fei [2 ]
机构
[1] Beijing Jiaotong Univ, Sch Elect & Informat Engn, 3 Shangyuancun, Beijing 100044, Peoples R China
[2] Chinese Acad Sci, Inst Automat, NLPR, Beijing 100190, Peoples R China
来源
PATTERN RECOGNITION (CCPR 2014), PT II | 2014年 / 484卷
关键词
Traffic sign recognition; classification; perturbation; BENCHMARKING;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic traffic sign recognition (TSR) expects high accuracy and speed for real-time applications in intelligent transportation systems. Convolutional neural networks (CNNs) have yielded state-of-the-art performance on the public dataset GTSRB, but involve intensive computation. In this paper, we propose a traffic sign recognition method using computationally efficient feature extraction and classification techniques, and using the perturbation strategy to improve the accuracy. On the GTSRB dataset, using gradient direction histogram feature and learning vector quantization (LVQ) classifier achieves a test accuracy 98.48%. Using simple perturbation operations of image translation, the accuracy is improved to 98.88%. The accuracy is higher than that of single CNN and the speed is much higher.
引用
收藏
页码:518 / 527
页数:10
相关论文
共 21 条
[1]  
[Anonymous], 2005, PROC CVPR IEEE
[2]   Traffic Sign Recognition Using Evolutionary Adaboost Detection and Forest-ECOC Classification [J].
Baro, Xavier ;
Escalera, Sergio ;
Vitria, Jordi ;
Pujol, Oriol ;
Radeva, Petia .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2009, 10 (01) :113-126
[3]   Multi-column deep neural network for traffic sign classification [J].
Ciresan, Dan ;
Meier, Ueli ;
Masci, Jonathan ;
Schmidhuber, Juergen .
NEURAL NETWORKS, 2012, 32 :333-338
[4]   Road traffic sign detection and classification [J].
delaEscalera, A ;
Moreno, LE ;
Salichs, MA ;
Armingol, JM .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1997, 44 (06) :848-859
[5]   Traffic sign recognition system with β -correction [J].
Escalera, Sergio ;
Pujol, Oriol ;
Radeva, Petia .
MACHINE VISION AND APPLICATIONS, 2010, 21 (02) :99-111
[6]   Real-Time Detection and Recognition of Road Traffic Signs [J].
Greenhalgh, Jack ;
Mirmehdi, Majid .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2012, 13 (04) :1498-1506
[7]   Off-line, handwritten numeral recognition by perturbation method [J].
Ha, TM ;
Bunke, H .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (05) :535-539
[8]   Regularized margin-based conditional log-likelihood loss for prototype learning [J].
Jin, Xiao-Bo ;
Liu, Cheng-Lin ;
Hou, Xinwen .
PATTERN RECOGNITION, 2010, 43 (07) :2428-2438
[9]  
Kimura F., 1996, Proceedings of the 13th International Conference on Pattern Recognition, P191, DOI 10.1109/ICPR.1996.546750
[10]  
Kohonen T., 1990, IJCNN International Joint Conference on Neural Networks (Cat. No.90CH2879-5), P545, DOI 10.1109/IJCNN.1990.137622