Influence of the go-based semantic similarity measures in multi-objective gene clustering algorithm performance

被引:0
作者
Parraga-Alava, Jorge [1 ]
Inostroza-Ponta, Mario [2 ]
机构
[1] Univ Tecn Manabi, Fac Ciencias Informat, Ave Jose Maria Urbina, Portoviejo 130105, Ecuador
[2] Univ Santiago Chile, Dept Ingn Informat, Ave Libertador Gen Bernardo OHiggins, Santiago 9170020, Chile
关键词
Gene ontology (GO); multi-objective clustering; semantic similarity measures; genetic algorithm; TRANSCRIPTIONAL PROGRAM; EXPRESSION; ONTOLOGY; OPTIMIZATION; TERMS;
D O I
10.1142/S0219720020500389
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Using a prior biological knowledge of relationships and genetic functions for gene similarity, from repository such as the Gene Ontology (GO), has shown good results in multi-objective gene clustering algorithms. In this scenario and to obtain useful clustering results, it would be helpful to know which measure of biological similarity between genes should be employed to yield meaningful clusters that have both similar expression patterns (co-expression) and biological homogeneity. In this paper, we studied the influence of the four most used GO-based semantic similarity measures in the performance of a multi-objective gene clustering algorithm. We used four publicly available datasets and carried out comparative studies based on performance metrics for the multi-objective optimization field and clustering performance indexes. In most of the cases, using Jiang-Conrath and Wang similarities stand in terms of multi-objective metrics. In clustering properties, Resnik similarity allows to achieve the best values of compactness and separation and therefore of co-expression of groups of genes. Meanwhile, in biological homogeneity, the Wang similarity reports greater number of significant GO terms. However, statistical, visual, and biological significance tests showed that none of the GO-based semantic similarity measures stand out above the rest in order to significantly improve the performance of the multi-objective gene clustering algorithm.
引用
收藏
页数:21
相关论文
共 50 条
[1]  
Acharya S, 2018, IEEE ACM T COMPUT BI, V17, P207
[2]  
[Anonymous], 1999, EVOLUTIONARY ALGORIT
[3]  
[Anonymous], 2009, BMC Bioinformatics
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]   Objective Reduction in Evolutionary Multiobjective Optimization: Theory and Applications [J].
Brockhoff, Dimo ;
Zitzler, Eckart .
EVOLUTIONARY COMPUTATION, 2009, 17 (02) :135-166
[6]   Expansion of the Gene Ontology knowledgebase and resources [J].
Carbon, S. ;
Dietze, H. ;
Lewis, S. E. ;
Mungall, C. J. ;
Munoz-Torres, M. C. ;
Basu, S. ;
Chisholm, R. L. ;
Dodson, R. J. ;
Fey, P. ;
Thomas, P. D. ;
Mi, H. ;
Muruganujan, A. ;
Huang, X. ;
Poudel, S. ;
Hu, J. C. ;
Aleksander, S. A. ;
McIntosh, B. K. ;
Renfro, D. P. ;
Siegele, D. A. ;
Antonazzo, G. ;
Attrill, H. ;
Brown, N. H. ;
Marygold, S. J. ;
McQuilton, P. ;
Ponting, L. ;
Millburn, G. H. ;
Rey, A. J. ;
Stefancsik, R. ;
Tweedie, S. ;
Falls, K. ;
Schroeder, A. J. ;
Courtot, M. ;
Osumi-Sutherland, D. ;
Parkinson, H. ;
Roncaglia, P. ;
Lovering, R. C. ;
Foulger, R. E. ;
Huntley, R. P. ;
Denny, P. ;
Campbell, N. H. ;
Kramarz, B. ;
Patel, S. ;
Buxton, J. L. ;
Umrao, Z. ;
Deng, A. T. ;
Alrohaif, H. ;
Mitchell, K. ;
Ratnaraj, F. ;
Omer, W. ;
Rodriguez-Lopez, M. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D331-D338
[7]   A genome-wide transcriptional analysis of the mitotic cell cycle [J].
Cho, RJ ;
Campbell, MJ ;
Winzeler, EA ;
Steinmetz, L ;
Conway, A ;
Wodicka, L ;
Wolfsberg, TG ;
Gabrielian, AE ;
Landsman, D ;
Lockhart, DJ ;
Davis, RW .
MOLECULAR CELL, 1998, 2 (01) :65-73
[8]   The transcriptional program of sporulation in budding yeast [J].
Chu, S ;
DeRisi, J ;
Eisen, M ;
Mulholland, J ;
Botstein, D ;
Brown, PO ;
Herskowitz, I .
SCIENCE, 1998, 282 (5389) :699-705
[9]   Methods for evaluating clustering algorithms for gene expression data using a reference set of functional classes [J].
Datta, Susmita ;
Datta, Somnath .
BMC BIOINFORMATICS, 2006, 7 (1)
[10]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197