Effects of perturbations and radial profiles on ignition of inertial confinement fusion hotspots

被引:9
|
作者
Taylor, S. [1 ]
Chittenden, J. P. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.4879020
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Perturbations of inertial confinement fusion hotspots from spherical symmetry cause an increase in the implosion velocity required for ignition, as investigated analytically by [R. Kishony and D. Shvarts, Phys. Plasmas 8, 4925 (2001)] and in numerical studies by many authors. In this paper, we analyse the mechanisms behind this effect by comparing fully 3D fluid simulations of National Ignition Facility targets to a novel analytic model of the thermal energy balance of the hotspot. The analytic model takes into account the radial variation of the state variables within the hotspot and provides an accurate relationship between the hotspot's 0D parameters (rho(c), T-c, R, u(R), and q) and its heating and cooling rates. The dominant effect of perturbations appears to be an increase in the inflow velocity at the hotspot's surface due to transverse flow of material between perturbation structures, causing premature thermalisation of kinetic energy before the hotspot is fully compressed. In hotspots with a broad perturbation spectrum, thermalisation of energy is inhibited by nonradial motion introduced by mode-mode interaction, reducing the yield further. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Diagnosing inertial confinement fusion ignition
    Moore, A. S.
    Divol, L.
    Bachmann, B.
    Bionta, R.
    Bradley, D.
    Casey, D. T.
    Celliers, P.
    Chen, H.
    Do, A.
    Dewald, E.
    Eckart, M.
    Fittinghoff, D.
    Frenje, J.
    Gatu-Johnson, M.
    Geppert-Kleinrath, H.
    Geppert-Kleinrath, V.
    Grim, G.
    Hahn, K.
    Hohenberger, M.
    Holder, J.
    Hurricane, O.
    Izumi, N.
    Kerr, S.
    Khan, S. F.
    Kilkenny, J. D.
    Kim, Y.
    Kozioziemski, B.
    Lemos, N.
    MacPhee, A. G.
    Michel, P.
    Millot, M.
    Meaney, K. D.
    Nagel, S.
    Pak, A.
    Ralph, J. E.
    Ross, J. S.
    Rubery, M. S.
    Schlossberg, D. J.
    Smalyuk, V.
    Swadling, G.
    Tommasini, R.
    Trosseille, C.
    Zylstra, A. B.
    Mackinnon, A.
    Moody, J. D.
    Landen, O. L.
    Town, R.
    NUCLEAR FUSION, 2024, 64 (10)
  • [2] Ignition and Inertial Confinement Fusion at The National Ignition Facility
    Moses, Edward I.
    SIXTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, PARTS 1-4, 2010, 244
  • [3] Alternative ignition schemes in inertial confinement fusion
    Tabak, M.
    Norreys, P.
    Tikhonchuk, V. T.
    Tanaka, K. A.
    NUCLEAR FUSION, 2014, 54 (05)
  • [4] Fast ignition of inertial confinement fusion targets
    Gus'kov, S. Yu.
    PLASMA PHYSICS REPORTS, 2013, 39 (01) : 1 - 50
  • [5] Fast ignition schemes for inertial confinement fusion
    Deutsch, C
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2003, 24 (02): : 95 - 113
  • [6] Antiproton fast ignition for inertial confinement fusion
    Perkins, LJ
    FUSION TECHNOLOGY, 1999, 36 (02): : 219 - 233
  • [7] Fast ignition schemes for inertial confinement fusion
    Deutsch, C
    VIDE-SCIENCE TECHNIQUE ET APPLICATIONS, 2003, 57 (307): : 158 - +
  • [8] The National Ignition Facility for inertial confinement fusion
    Paisner, JA
    Murray, JR
    17TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, VOLS 1 AND 2, 1998, : 57 - 62
  • [9] Inertial-confinement fusion with fast ignition
    Willi, O
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1752): : 555 - 573
  • [10] Fast ignition of inertial confinement fusion targets
    S. Yu. Gus’kov
    Plasma Physics Reports, 2013, 39 : 1 - 50