High Thermal Conductivity Composite Sheets with Controlled Nanostructures for Electric Devices

被引:0
|
作者
Takezawa, Yoshitaka [1 ]
Nishiyama, Tomoo [1 ]
Katagi, Hideyuki [1 ]
Hara, Naoki [1 ]
机构
[1] Hitachi Chem Co Ltd, Tsukuba Res Lab, 48 Wadai, Tsukuba, Ibaraki 3004247, Japan
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed the novel network polymer with mesogen to improve the thermal conductivity of epoxy resins by controlling the higher order structure. To obtain the evidence for the higher order structure, we carried out direct observations at both mesoscopic and microscopic scales. The developed resin shows an obvious lattice structure in the transmission electron microscope (TEM) image and large domains with sizes of about several micrometers in the atomic force microscope (AFM) image and the polarized optical microscope (POM). On the other hand, no domains of order-structures can be recognized in the TEM, AFM images and POM of conventional resin. Furthermore, the formed nanostructure of composite is confirmed by the small-angle X-ray diffraction. Thermal conductivities of developed epoxy resins are 1.0 W/m center dot K at a maximum and five times higher than that of the conventional ones. We mixed these resins with conventional ceramic fillers, then the new epoxy composites (10 to 15 W/m center dot K) have been obtained. Fabricated B-stage (precured) sheet is flexible and the cured one shows good electrical properties. Thus the developed high thermal conductive composites may be applicable to the insulating adhesive sheets for power devices, etc.
引用
收藏
页码:326 / 329
页数:4
相关论文
共 50 条
  • [41] Electric thermal inspection of metal sheets
    Yu. I. Golovin
    A. I. Tyurin
    D. Yu. Golovin
    A. A. Samodurov
    Technical Physics Letters, 2017, 43 : 899 - 901
  • [42] EFFECTIVE THERMAL CONDUCTIVITY OF FIBROUS SHEETS.
    KOBARI, MASAO
    SHIMIZU, YUKIO
    ENDO, MIHOKO
    INAZUMI, HIKOJI
    1981, V 10 (N 3): : 48 - 61
  • [43] Reducing thermal conductivity of crystalline solids at high temperature using embedded nanostructures
    Kim, Woochul
    Singer, Suzanne L.
    Majumdar, Arun
    Zide, Joshua M. O.
    Klenov, Dmitri
    Gossard, Arthur C.
    Stemmer, Susanne
    NANO LETTERS, 2008, 8 (07) : 2097 - 2099
  • [44] Progress on the polymer composite insulating materials with high thermal conductivity
    Cao, Jinmei
    Tian, Fuqiang
    Lei, Qingquan
    CHINESE SCIENCE BULLETIN-CHINESE, 2022, 67 (07): : 640 - 654
  • [45] Electric and thermal transient effects in high power optical devices
    Farkas, G
    Haque, S
    Wall, F
    Martin, PS
    Poppe, A
    Vader, QVV
    Bognár, G
    TWENTIETH ANNUAL IEEE SEMICONDUCTOR THERMAL MEASUREMENT AND MANAGEMENT SYMPOSIUM, PROCEEDINGS 2004, 2004, : 168 - 176
  • [46] Vitrimeric silicone composite with high thermal conductivity and high repairing efficiency as thermal interface materials
    Yue, Cheng'e
    Zhao, Liwei
    Guan, Lizhu
    Zhang, Xiaorui
    Qu, Chunyan
    Wang, Dezhi
    Weng, Ling
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 620 : 273 - 283
  • [47] A new composite substrate with high thermal conductivity for power modules
    Hirano, K
    Nakatani, S
    Handa, H
    Takehara, H
    2ND 1998 IEMT/IMC SYMPOSIUM, 1998, : 321 - 326
  • [48] AlN coatings with high thermal conductivity and excellent electrical properties for thermal management devices
    Du, Jiaojiao
    Dai, Wenjie
    Kou, Haijiang
    Wu, Pengfei
    Xing, Weiliang
    Zhang, Yuzhuo
    Zhang, Chao
    CERAMICS INTERNATIONAL, 2023, 49 (11) : 16740 - 16752
  • [49] Transparent nanofluids with high thermal conductivity for improved convective thermal management of optoelectronic devices
    Xu, Hao
    Chang, Chao
    Zhang, Jingyi
    Xu, Jiale
    Chen, Huanbei
    Guo, Huaixin
    Fu, Benwei
    Song, Chengyi
    Shang, Wen
    Tao, Peng
    Deng, Tao
    EXPERIMENTAL HEAT TRANSFER, 2022, 35 (02) : 183 - 195
  • [50] Thermal distribution in high power optical devices with power-law thermal conductivity
    Zhou, Chuanle
    Grayson, M.
    QUANTUM SENSING AND NANOPHOTONIC DEVICES IX, 2012, 8268