Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T cell testing

被引:103
|
作者
Jacob, Fadi [1 ,2 ,3 ,4 ]
Ming, Guo-li [1 ,2 ,5 ,6 ,7 ]
Song, Hongjun [1 ,2 ,5 ,6 ,8 ,9 ]
机构
[1] Univ Penn, Dept Neurosci, Perelman Sch Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Mahoney Inst Neurosci, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Johns Hopkins Univ, Sch Med, Solomon H Snyder Dept Neurosci, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Sch Med, Med Scientist Training Program, Baltimore, MD 21218 USA
[5] Univ Penn, Inst Regenerat Med, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Univ Penn, Dept Cell & Dev Biol, Perelman Sch Med, Philadelphia, PA 19104 USA
[7] Univ Penn, Dept Psychiat, Perelman Sch Med, Philadelphia, PA 19104 USA
[8] Univ Penn, Abramson Canc Ctr, Glioblastoma Translat Ctr Excellence, Philadelphia, PA 19104 USA
[9] Univ Penn, Epigenet Inst, Perelman Sch Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
CANCER STEM-CELLS; RHO-KINASE; CULTURES; HETEROGENEITY; MODELS; TUMORS;
D O I
10.1038/s41596-020-0402-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Glioblastoma tumors exhibit extensive inter- and intratumoral heterogeneity, which has contributed to the poor outcomes of numerous clinical trials and continues to complicate the development of effective therapeutic strategies. Most in vitro models do not preserve the cellular and mutational diversity of parent tumors and often require a lengthy generation time with variable efficiency. Here, we describe detailed procedures for generating glioblastoma organoids (GBOs) from surgically resected patient tumor tissue using a chemically defined medium without cell dissociation. By preserving cell-cell interactions and minimizing clonal selection, GBOs maintain the cellular heterogeneity of parent tumors. We include details of how to passage and cryopreserve GBOs for continued use, biobanking and long-term recovery. In addition, we describe procedures for investigating patient-specific responses to immunotherapies by co-culturing GBOs with chimeric antigen receptor (CAR) T cells. It takes similar to 2-4 weeks to generate GBOs and 5-7 d to perform CAR T cell co-culture using this protocol. Competence with human cell culture, tissue processing, immunohistology and microscopy is required for optimal results.
引用
收藏
页码:4000 / 4033
页数:34
相关论文
共 50 条
  • [1] Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T cell testing
    Fadi Jacob
    Guo-li Ming
    Hongjun Song
    Nature Protocols, 2020, 15 : 4000 - 4033
  • [2] Preclinical Testing of CAR T Cells in a Patient-Derived Xenograft Model of Glioblastoma
    Tatari, Nazanin
    Maich, William T.
    Salim, Sabra K.
    Mckenna, Dillon
    Venugopal, Chitra
    Singh, Sheila
    STAR PROTOCOLS, 2020, 1 (03):
  • [3] PATIENT-DERIVED GLIOBLASTOMA ORGANOIDS AS REAL-TIME AVATARS FOR ASSESSING RESPONSES TO CLINICAL CAR-T CELL THERAPY
    Wang, Xin
    Logun, Meghan
    Sun, Yusha
    Bagley, Stephen J.
    Li, Nannan
    Desai, Arati
    Zhang, Daniel Y.
    Nasrallah, MacLean P.
    Pai, Emily Ling-Lin
    Oner, Bike Su
    Plesa, Gabriela
    Siegel, Donald
    Binder, Zev A.
    Ming, Guo-li
    Song, Hongjun
    O'Rourke, Donald M.
    NEURO-ONCOLOGY, 2024, 26
  • [4] Patient-derived glioblastoma organoids as real-time avatars for assessing responses to clinical CAR-T cell therapy
    Logun, Meghan
    Wang, Xin
    Sun, Yusha
    Bagley, Stephen J.
    Li, Nannan
    Desai, Arati
    Zhang, Daniel Y.
    Nasrallah, MacLean P.
    Pai, Emily Ling-Lin
    Oner, Bike Su
    Plesa, Gabriela
    Siegel, Donald
    Binder, Zev A.
    Ming, Guo-li
    Song, Hongjun
    O'Rourke, Donald M.
    CELL STEM CELL, 2025, 32 (02)
  • [5] Modeling Patient-Derived Glioblastoma with Cerebral Organoids
    Linkous, Amanda
    Balamatsias, Demosthenes
    Snuderl, Matija
    Edwards, Lincoln
    Miyaguchi, Ken
    Milner, Teresa
    Reich, Batsheva
    Cohen-Gould, Leona
    Storaska, Andrew
    Nakayama, Yasumi
    Schenkein, Emily
    Singhania, Richa
    Cirigliano, Stefano
    Magdeldin, Tarig
    Lin, Ying
    Nanjangud, Gouri
    Chadalavada, Kalyani
    Pisapia, David
    Liston, Conor
    Fine, Howard A.
    CELL REPORTS, 2019, 26 (12): : 3203 - +
  • [6] Patient-derived lung cancer organoids as 3D-testing platform for precision CAR T-cell therapy
    Ehlen, L.
    Farrera-Sal, M.
    Szyska, M.
    Arndt, J.
    Schallenberg, S.
    Thiede, K.
    Scholz, C.
    Golusda, L.
    Mai, M.
    Schulenberg, S.
    Peter, L.
    Picht, S.
    Lowa, A.
    Vollbrecht, C.
    Joosten, M.
    Hocke, A.
    Spies, C.
    Schmueck-Henneresse, M.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2023, 53 : 147 - 147
  • [7] Generation of glioblastoma patient-derived organoids and mouse brain orthotopic xenografts for drug screening
    Gamboa, Christian Moya
    Jara, Kelly
    Pamarthy, Sahithi
    Liu, Liqiong
    Aiken, Robert
    Xiong, Zhenggang
    Danish, Shabbar
    Sabaawy, Hatem E.
    STAR PROTOCOLS, 2021, 2 (01):
  • [8] DISSECTING THE DYNAMIC RESPONSES OF GLIOBLASTOMA TO CAR T CELL THERAPY USING PATIENT-DERIVED TUMOR ORGANOIDS AND SINGLE-CELL MULTI-OMICS ANALYSES
    Zhang, Daniel
    Salinas, Ryan
    O'Rourke, Donald
    Ming, Guo-Li
    Song, Hongjun
    NEURO-ONCOLOGY, 2020, 22 : 111 - 111
  • [9] In vitro evaluation of CAR-T cells in patient-derived glioblastoma models
    Brakel, Benjamin A.
    Chokshi, Chirayu R.
    Salim, Sabra K.
    Venugopal, Chitra
    Singh, Sheila
    STAR PROTOCOLS, 2021, 2 (04):
  • [10] Application of Patient-Derived Cancer Organoids to Personalized Medicine
    Shiihara, Masahiro
    Furukawa, Toru
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (05):