Activity-evoked and spontaneous opening of synaptic fusion pores

被引:13
作者
Bulgari, Dinara [1 ]
Deitcher, David L. [2 ]
Schmidt, Brigitte F. [3 ]
Carpenter, M. Alexandra [4 ]
Szent-Gyorgyi, Christopher [3 ]
Bruchez, Marcel P. [3 ,4 ,5 ]
Levitan, Edwin S. [1 ]
机构
[1] Univ Pittsburgh, Dept Pharmacol & Chem Biol, Pittsburgh, PA 15261 USA
[2] Cornell Univ, Dept Neurobiol & Behav, Ithaca, NY 14853 USA
[3] Carnegie Mellon Univ, Molecular Biosensor & Imaging Ctr, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA
[5] Carnegie Mellon Univ, Dept Biol Sci, 4400 5th Ave, Pittsburgh, PA 15213 USA
关键词
neuropeptide release; secretory granule; fusion pore; neuromuscular junction; Drosophila; NEUROPEPTIDE; RELEASE; NEUROTRANSMITTER; TRANSMISSION; IDENTIFICATION; EXPRESSION; PROCTOLIN; PEPTIDE; CHAIN;
D O I
10.1073/pnas.1905322116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synaptic release of neuropeptides packaged in dense-core vesicles (DCVs) regulates synapses, circuits, and behaviors including feeding, sleeping, and pain perception. Here, synaptic DCV fusion pore openings are imaged without interference from cotransmitting small synaptic vesicles (SSVs) with the use of a fluorogen-activating protein (FAP). Activity-evoked kiss and run exocytosis opens synaptic DCV fusion pores away from active zones that readily conduct molecules larger than most native neuropeptides (i.e., molecular weight [MW] up to, at least, 4.5 kDa). Remarkably, these synaptic fusion pores also open spontaneously in the absence of stimulation and extracellular Ca2+. SNARE perturbations demonstrate different mechanisms for activity-evoked and spontaneous fusion pore openings with the latter sharing features of spontaneous small molecule transmitter release by active zone-associated SSVs. Fusion pore opening at resting synapses provides a mechanism for activity-independent peptidergic transmission.
引用
收藏
页码:17039 / 17044
页数:6
相关论文
共 24 条
[1]  
ANDERSON MS, 1988, J NEUROSCI, V8, P242
[2]   Presynaptic origins of distinct modes of neurotransmitter release [J].
Chanaday, Natali L. ;
Kavalali, Ege T. .
CURRENT OPINION IN NEUROBIOLOGY, 2018, 51 :119-126
[3]   Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity [J].
Cho, Richard W. ;
Buhl, Lauren K. ;
Volfson, Dina ;
Tran, Adrienne ;
Li, Feng ;
Akbergenova, Yulia ;
Littleton, J. Troy .
NEURON, 2015, 88 (04) :749-761
[4]   Miniature Neurotransmission Regulates Drosophila Synaptic Structural Maturation [J].
Choi, Ben Jiwon ;
Imlach, Wendy L. ;
Jiao, Wei ;
Wolfram, Verena ;
Wu, Ying ;
Grbic, Mark ;
Cela, Carolina ;
Baines, Richard A. ;
Nitabach, Michael N. ;
McCabe, Brian D. .
NEURON, 2014, 82 (03) :618-634
[5]  
Deitcher DL, 1998, J NEUROSCI, V18, P2028
[6]   In vivo imaging of vesicle motion and release at the Drosophila neuromuscular junction [J].
Levitan, Edwin S. ;
Lanni, Frederick ;
Shakiryanova, Dinara .
NATURE PROTOCOLS, 2007, 2 (05) :1117-1125
[7]   Ablation of All Synaptobrevin vSNAREs Blocks Evoked But Not Spontaneous Neurotransmitter Release at Neuromuscular Synapses [J].
Liu, Yun ;
Sugiura, Yoshie ;
Sudhof, Thomas C. ;
Lin, Weichun .
JOURNAL OF NEUROSCIENCE, 2019, 39 (31) :6049-6066
[8]   Costorage of High Molecular Weight Neurotransmitters in Large Dense Core Vesicles of Mammalian Neurons [J].
Merighi, Adalberto .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2018, 12
[9]   Functional consequences of neuropeptide and small-molecule co-transmission [J].
Nusbaum, Michael P. ;
Blitz, Dawn M. ;
Marder, Eve .
NATURE REVIEWS NEUROSCIENCE, 2017, 18 (07) :389-403
[10]   Two distinct effects on neurotransmission in a temperature-sensitive SNAP-25 mutant [J].
Rao, SS ;
Stewart, BA ;
Rivlin, PK ;
Vilinsky, I ;
Watson, BO ;
Lang, C ;
Boulianne, G ;
Salpeter, MM ;
Deitcher, DL .
EMBO JOURNAL, 2001, 20 (23) :6761-6771