Low-thermal-conductivity and high-toughness CeO2-Gd2O3 co-stabilized zirconia ceramic for potential thermal barrier coating applications

被引:49
作者
Jiang, Kuo [1 ]
Liu, Songbai [1 ]
Wang, Xin [1 ]
机构
[1] Southwest Univ Sci & Technol, Dept Def Sci & Technol, Mianyang 621010, Peoples R China
关键词
Thermal barrier coatings; Nontransformable tetragonal zirconia; Toughness; Thermal conductivity; Sintering; PHASE-STABILITY; FRACTURE-TOUGHNESS; THERMOPHYSICAL PROPERTIES; MECHANICAL-PROPERTIES; PARTIAL SUBSTITUTION; TRANSFORMATIONS; OXIDES; GD; ND;
D O I
10.1016/j.jeurceramsoc.2018.04.065
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Yttria partially stabilized zirconia (similar to 4.0 mol% Y2O3 ZrO2, 4YSZ) has been widely employed as thermal barrier coatings (TBCs) to protect the high temperature components of gas turbine engines. The phase stability problem existing in the conventional 4YSZ has limited it to application below 1200 degrees C. Here we report an excellent zirconia system co-doped with 16 mol% CeO2 and 4 mol% Gd2O3 (16Ce-4Gd) presenting nontransformable feature up to 1500 degrees C, in which no detrimental monoclinic (m) ZrO2 phase formed on partitioning. It also exhibits a high fracture toughness of similar to 46 J m(-2) and shows high sintering resistance. Besides, the thermal conductivity and thermal expansion coefficient of 16Ce-4Gd are more competent for TBCs applications as compared to the 4YSZ. The combination of properties suggests that the 16Ce-4Gd system could be of potential use as a thermal barrier coating at 1500 degrees C.
引用
收藏
页码:3986 / 3993
页数:8
相关论文
共 49 条
[1]   A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .1. DIRECT CRACK MEASUREMENTS [J].
ANSTIS, GR ;
CHANTIKUL, P ;
LAWN, BR ;
MARSHALL, DB .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1981, 64 (09) :533-538
[2]   ADVANCED MATERIALS FOR AIRCRAFT ENGINE APPLICATIONS [J].
BACKMAN, DG ;
WILLIAMS, JC .
SCIENCE, 1992, 255 (5048) :1082-1087
[3]  
Barin I., 1995, THERMOCHEMICAL DATA, V1, DOI DOI 10.1002/9783527619825
[4]   Ceramic materials for thermal barrier coatings [J].
Cao, XQ ;
Vassen, R ;
Stoever, D .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (01) :1-10
[5]   The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends [J].
Chevalier, Jerome ;
Gremillard, Laurent ;
Virkar, Anil V. ;
Clarke, David R. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2009, 92 (09) :1901-1920
[6]   Thermal-barrier coatings for more efficient gas-turbine engines [J].
Clarke, David R. ;
Oechsner, Matthias ;
Padture, Nitin P. .
MRS BULLETIN, 2012, 37 (10) :891-902
[7]   Jet Engine Coatings for Resisting Volcanic Ash Damage [J].
Drexler, Julie M. ;
Gledhill, Andrew D. ;
Shinoda, Kentaro ;
Vasiliev, Alexander L. ;
Reddy, Kongara M. ;
Sampath, Sanjay ;
Padture, Nitin P. .
ADVANCED MATERIALS, 2011, 23 (21) :2419-+
[8]   The influence of oxides on the performance of advanced gas turbines [J].
Evans, A. G. ;
Clarke, D. R. ;
Levi, C. G. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (07) :1405-1419
[9]   Mechanisms controlling the durability of thermal barrier coatings [J].
Evans, AG ;
Mumm, DR ;
Hutchinson, JW ;
Meier, GH ;
Pettit, FS .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (05) :505-553
[10]   Effect of powder coating on stabilizer distribution in CeO2-stabilized ZrO2 ceramics [J].
Fang, PA ;
Gu, H ;
Wang, PL .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005, 88 (07) :1929-1934