EXPONENTS OF MODULAR REDUCTIONS OF FAMILIES OF ELLIPTIC CURVES

被引:0
作者
Shparlinski, Igor E. [1 ]
机构
[1] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
来源
REVISTA DE LA UNION MATEMATICA ARGENTINA | 2009年 / 50卷 / 01期
关键词
elliptic curves; group exponent; Farey fractions; POINTS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For some natural families of elliptic curves we show that "on average" the exponent of the point group of their reductions modulo a prime p grows as p(1+o(1)).
引用
收藏
页码:69 / 74
页数:6
相关论文
共 11 条
[1]  
BANKS WD, ISRAEL J MA IN PRESS
[2]  
Cojocaru AC, 2005, INT MATH RES NOTICES, V2005, P3065
[3]   Distribution of Farey fractions in residue classes and Lang-Trotter conjectures on average [J].
Cojocaru, Alina Carmen ;
Shparlinski, Igor E. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) :1977-1986
[4]   Almost all reductions modulo p of an elliptic curve have a large exponent [J].
Duke, W .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (11) :689-692
[5]  
FORD K, 2006, FINITE FIELDS JACOBI
[6]   ON CURVES OVER FINITE FIELDS WITH JACOBIANS OF SMALL EXPONENT [J].
Ford, Kevin ;
Shparlinski, Igor .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (05) :819-826
[7]  
Luca F, 2005, INT MATH RES NOTICES, V2005, P1391
[8]  
LUCA F, 2006, J THEOR NOMBRES BORD, V18, P471
[9]  
Schoof R.:., 1991, Arithmetic algebraic geometry (Texel, 1989), P325
[10]  
Shparlinski IE, 2005, CONTEMP MATH, V369, P245