In vivo osteogenic differentiation of rat bone marrow stromal cells in thermosensitive MPEG-PCL diblock copolymer gels

被引:66
作者
Kim, M. S.
Kim, Sun Kyung
Kim, Soon Hee
Hyun, Hoon
Khang, Gilson
Lee, Hai Bang [1 ]
机构
[1] Korea Res Inst Chem Technol, Div Med Sci, Taejon 305600, South Korea
[2] Chonbuk Natl Univ, Dept Polymer Nano Sci & Technol, Duckjin, Jeonju, South Korea
来源
TISSUE ENGINEERING | 2006年 / 12卷 / 10期
关键词
D O I
10.1089/ten.2006.12.2863
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Methoxy poly(ethylene glycol)-poly(epsilon-caprolactone) (MPEG-PCL) diblock copolymers were prepared by ring-opening polymerization and their phase transition behavior characterized as a function of temperature. The MPEG-PCL solutions formed a sol at room temperature, and underwent sol-to-gel followed by gel-to-sol phase transitions as the temperature was increased. The temperature range over which the solutions were in a gel state could be extended simply by increasing the PCL chain length in the diblock copolymer. Scanning electron microscopy (SEM) images of MPEG-PCL solutions in the sol and gel states revealed near-regular and irregular porous structures, respectively. In vitro culture of rat bone marrow stromal cells (rBMSCs) on gel surfaces exhibited mostly round cells after 1 day of incubation. SEM images of the attached cells clearly showed the cell body and anchoring filopodia. Injection of room-temperature diblock copolymer solutions into Sprague-Dawley rats produced a gel at body temperature. In situ gel-forming scaffolds in vivo were successfully fabricated by simple subcutaneous injection of MPEG-PCL diblock copolymer solutions. The gel implants retained their original shape for 4 weeks without inflammation at the injection site. Gel implants removed after 4 weeks were found to be surrounded by a thin fibrous capsule consisting of fibroblasts and blood vessels cells. Hematoxylin and eosin (H&E) and von Kossa staining revealed bone formation in gel implants containing both rBMSCs and dexamethasone, with the degree of bone formation increasing markedly with increasing dexamethasone concentration. Thus, our results show that in situ gel scaffolds fabricated from MPEG-PCL diblock copolymer solutions containing dexamethasone enable multipotent rBMSCs to produce viable bone when injected into rats.
引用
收藏
页码:2863 / 2873
页数:11
相关论文
共 46 条
[1]   Composite hydrogels for implants [J].
Ambrosio, L ;
De Santis, R ;
Nicolais, L .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 1998, 212 (H2) :93-99
[2]   Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds [J].
Balakrishnan, B ;
Jayakrishnan, A .
BIOMATERIALS, 2005, 26 (18) :3941-3951
[3]   Adhesion and migration of marrow-derived osteoblasts on injectable in situ crosslinkable poly(propylene fumarate-co-ethylene glycol)-based hydrogels with a covalently linked RGDS peptide [J].
Behravesh, E ;
Zygourakis, K ;
Mikos, AG .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 65A (02) :260-270
[4]   Origins of endothelial and osteogenic cells in the subcutaneous collagen gel implant [J].
Bilic-Curcic, I ;
Kalajzic, Z ;
Wang, L ;
Rowe, DW .
BONE, 2005, 37 (05) :678-687
[5]   Structural and human cellular assessment of a novel microsphere-based tissue engineered scaffold for bone repair [J].
Borden, M ;
El-Amin, SF ;
Attawia, M ;
Laurencin, CT .
BIOMATERIALS, 2003, 24 (04) :597-609
[6]  
Bucholz RW, 2002, CLIN ORTHOP RELAT R, P44
[7]  
Chasin M., 1990, Biodegradable Polymers as Drug Delivery Systems
[8]   DIFFERENTIATION OF HUMAN BONE-MARROW OSTEOGENIC STROMAL CELLS IN VITRO - INDUCTION OF THE OSTEOBLAST PHENOTYPE BY DEXAMETHASONE [J].
CHENG, SL ;
YANG, JW ;
RIFAS, L ;
ZHANG, SF ;
AVIOLI, LV .
ENDOCRINOLOGY, 1994, 134 (01) :277-286
[9]   Biocomposites of non-crosslinked natural and synthetic polymers [J].
Coombes, AGA ;
Verderio, E ;
Shaw, B ;
Li, X ;
Griffin, M ;
Downes, S .
BIOMATERIALS, 2002, 23 (10) :2113-2118
[10]   Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices [J].
Endres, M ;
Hutmacher, DW ;
Salgado, AJ ;
Kaps, C ;
Ringe, J ;
Reis, RL ;
Sittinger, M ;
Brandwood, A ;
Schantz, JT .
TISSUE ENGINEERING, 2003, 9 (04) :689-702