Noetherian rings with almost injective simple modules

被引:6
作者
Arabi-Kakavand, Marzieh [1 ]
Asgari, Shadi [1 ,2 ]
Tolooei, Yaser [3 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, POB 84156-83111, Esfahan, Iran
[2] Inst Res Fundamental Sci, Sch Math, Tehran, Iran
[3] Razi Univ, Dept Math, Fac Sci, Kermanshah, Iran
关键词
Almost injective modules; almost V-rings; artinian serial rings; 16D60; 16D70; 16P40; RELATIVE INJECTIVES; QF RINGS;
D O I
10.1080/00927872.2016.1242007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize right Noetherian rings over which all simple modules are almost injective. It is proved that R is such a ring, if and only if, the complements of semisimple submodules of every R-module M are direct summands of M, if and only if, R is a finite direct sum of right ideals I-r, where I-r is either a Noetherian V-module with zero socle, or a simple module, or an injective module of length 2. A commutative Noetherian ring for which all simple modules are almost injective is precisely a finite direct product of rings R-i, where R-i is either a field or a quasi-Frobenius ring of length 2. We show that for commutative rings whose all simple modules are almost injective, the properties of Kasch, (semi)perfect, semilocal, quasi-Frobenius, Artinian, and Noetherian coincide.
引用
收藏
页码:3619 / 3626
页数:8
相关论文
共 23 条
[1]  
Alahmadi A., 2009, MATH J OKAYAMA U, V51, P101
[2]   Characterizations of Almost Injective Modules [J].
Alahmadi, Adel ;
Jain, S. K. ;
Singh, Surjeet .
NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 :11-17
[3]  
[Anonymous], 2003, CAMBRIDGE TRACTS MAT, DOI DOI 10.1017/CBO9780511546525
[4]   Almost injective modules lack a "Baer-like" criterion [J].
Arabi, M. ;
Asgari, Sh. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2015, 14 (07)
[5]   RINGS OVER WHICH EVERY MODULE IS ALMOST INJECTIVE [J].
Arabi-Kakavand, M. ;
Asgari, Sh. ;
Tolooei, Y. .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (07) :2908-2918
[6]  
Arabi-Kakavand M, 2016, B IRAN MATH SOC, V42, P113
[7]  
BABA Y, 1989, OSAKA J MATH, V26, P687
[8]  
Baba Y., 1990, Tsukuba J. Math, V14, P53, DOI 10.21099/tkbjm/1496161318
[10]   On generalizations of PF-rings [J].
Chen, JL ;
Ding, NQ ;
Yousif, MF .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (02) :521-533