REAL QUADRATIC NUMBER FIELDS WITH METACYCLIC HILBERT 2-CLASS FIELD TOWER

被引:4
作者
Essahel, Said [1 ]
Dakkak, Ahmed [1 ]
Mouhib, Ali [1 ]
机构
[1] Sidi Mohammed Ben Abdellah Univ, Sci & Engn Lab, Polydisciplinary Fac Taza, Taza Gare PB 1223, Taza, Morocco
来源
MATHEMATICA BOHEMICA | 2019年 / 144卷 / 02期
关键词
class field tower; class group; real quadratic number field; metacyclic group; RANK;
D O I
10.21136/MB.2018.0102-17
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We begin by giving a criterion for a number field K with 2-class group of rank 2 to have a metacyclic Hilbert 2-class field tower, and then we will determine all real quadratic number fields Q(root d) that have a metacyclic nonabelian Hilbert 2-class field tower.
引用
收藏
页码:177 / 190
页数:14
相关论文
共 9 条
[1]   Capitulation of the 2-classes of ideals of certain biquadratic bodies whose kinds of bodies differ from 2-body Hilbert classes [J].
Azizi, A ;
Mouhib, A .
PACIFIC JOURNAL OF MATHEMATICS, 2005, 218 (01) :17-36
[2]   On the rank of the 2-class group of Q(√m, √d) [J].
Azizi, A ;
Mouhib, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (07) :2741-2752
[3]   Real quadratic fields with abelian 2-class field tower [J].
Benjamin, E ;
Lemmermeyer, F ;
Snyder, C .
JOURNAL OF NUMBER THEORY, 1998, 73 (02) :182-194
[4]   On subgroups of finite p-groups [J].
Berkovich, Yakov ;
Janko, Zvonimir .
ISRAEL JOURNAL OF MATHEMATICS, 2009, 171 (01) :29-49
[5]   CLASS FIELD TOWERS AND ESTIMATIONS OF DISCRIMINANTS [J].
MARTINET, J .
INVENTIONES MATHEMATICAE, 1978, 44 (01) :65-73
[6]   A positive proportion of some quadratic number fields with infinite Hilbert 2-class field tower [J].
Mouhib, A. .
RAMANUJAN JOURNAL, 2016, 40 (02) :405-412
[7]   ON 2-CLASS FIELD TOWERS OF SOME REAL QUADRATIC NUMBER FIELDS WITH 2-CLASS GROUPS OF RANK 3 [J].
Mouhib, A. .
ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (04) :1009-1018
[8]   On the parity of the class number of multiquadratic number fields [J].
Mouhib, A. .
JOURNAL OF NUMBER THEORY, 2009, 129 (06) :1205-1211
[9]  
Taussky O., 1937, J. London Math. Soc., V12, P82