A fast density peaks clustering algorithm with sparse search

被引:56
|
作者
Xu, Xiao [1 ]
Ding, Shifei [1 ,2 ]
Wang, Yanru [1 ]
Wang, Lijuan [1 ]
Jia, Weikuan [3 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] Minstry Educ Peoples Republ China, Mine Digitizat Engn Res Ctr, Xuzhou 221116, Jiangsu, Peoples R China
[3] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250358, Peoples R China
关键词
DPC algorithm; Computational complexity; Sparse search strategy; Fewer distance calculations; Similarity matrix; FIND; SHAPES; NUMBER;
D O I
10.1016/j.ins.2020.11.050
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a large unlabeled set of complex data, how to efficiently and effectively group them into clusters remains a challenging problem. Density peaks clustering (DPC) algorithm is an emerging algorithm, which identifies cluster centers based on a decision graph. Without setting the number of cluster centers, DPC can effectively recognize the clusters. However, the similarity between every two data points must be calculated to construct a decision graph, which results in high computational complexity. To overcome this issue, we propose a fast sparse search density peaks clustering (FSDPC) algorithm to enhance the DPC, which constructs a decision graph with fewer similarity calculations to identify cluster centers quickly. In FSDPC, we design a novel sparse search strategy to measure the similarity between the nearest neighbors of each data points. Therefore, FSDPC can enhance the efficiency of the DPC while maintaining satisfactory results. We also propose a novel random third-party data point method to search the nearest neighbors, which introduces no additional parameters or high computational complexity. The experimental results on synthetic datasets and real-world datasets indicate that the proposed algorithm consistently outperforms the DPC and other state-of-the-art algorithms. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:61 / 83
页数:23
相关论文
共 50 条
  • [31] Crime Data Analysis Using Clustering by Fast Search and find of Density Peaks
    Alghamdi, Ahmed
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (11): : 174 - 178
  • [32] Manifold Density Peaks Clustering Algorithm
    Xu, Xiaohua
    Ju, Yongsheng
    Liang, Yali
    He, Ping
    2015 THIRD INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, 2015, : 311 - 318
  • [33] Survey on Density Peaks Clustering Algorithm
    Xu X.
    Ding S.-F.
    Ding L.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (05): : 1800 - 1816
  • [34] Correction to "A Density Peaks Clustering Algorithm With Sparse Search and K-d Tree"(Vol 10, pg 74883, 2022)
    Shan, Yunxiao
    Li, Shu
    Li, Fuxiang
    Cui, Yuxin
    Li, Shuai
    Zhou, Ming
    Li, Xiang
    IEEE ACCESS, 2022, 10 : 129479 - 129479
  • [35] An Improved Fast Search Clustering Algorithm Based on Kernel Density
    Zhang, Ruisheng
    Ma, Huiyi
    Liu, Qidong
    Zhao, Zhili
    2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 689 - 693
  • [36] Semi-supervised constraint ensemble clustering by fast search and find of density peaks
    Liu R.-H.
    Huang W.-P.
    Wang K.
    Liu C.
    Liang J.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2018, 52 (11): : 2191 - 2200and2242
  • [37] Shared-nearest-neighbor-based clustering by fast search and find of density peaks
    Liu, Rui
    Wang, Hong
    Yu, Xiaomei
    INFORMATION SCIENCES, 2018, 450 : 200 - 226
  • [38] Reverse-Nearest-Neighbor-Based Clustering by Fast Search and Find of Density Peaks
    Zhang, Chunhao
    Xie, Bin
    Zhang, Yiran
    CHINESE JOURNAL OF ELECTRONICS, 2023, 32 (06) : 1341 - 1354
  • [39] Partial Discharge Pulse Segmentation Based on Clustering by Fast Search and Find of Density Peaks
    Zhu Y.
    Jiang W.
    Liu G.
    Zhu, Yongli (yonglipw@163.com), 1600, China Machine Press (35): : 1377 - 1386
  • [40] Reverse-Nearest-Neighbor-Based Clustering by Fast Search and Find of Density Peaks
    ZHANG Chunhao
    XIE Bin
    ZHANG Yiran
    ChineseJournalofElectronics, 2023, 32 (06) : 1341 - 1354