Peroxisome Proliferator-activated Receptor γ Regulates Expression of the Anti-lipolytic G-protein-coupled Receptor 81 (GPR81/Gpr81)

被引:69
作者
Jeninga, Ellen H. [1 ,2 ]
Bugge, Anne [3 ]
Nielsen, Ronni [3 ]
Kersten, Sander [4 ]
Hamers, Nicole [1 ,2 ]
Dani, Christian [5 ]
Wabitsch, Martin [6 ]
Berger, Ruud [1 ,2 ]
Stunnenberg, Hendrik G. [7 ]
Mandrup, Susanne [3 ]
Kalkhoven, Eric [1 ,2 ,8 ]
机构
[1] UMC Utrecht, Dept Metab & Endocrine Dis, NL-3584 EA Utrecht, Netherlands
[2] Netherlands Metabol Ctr, NL-2333 CC Leiden, Netherlands
[3] Univ So Denmark, Dept Biochem & Mol Biol, DK-5230 Odense, Denmark
[4] Wageningen Univ, Nutr Metab & Genom Grp, NL-6703 HD Wageningen, Netherlands
[5] Univ Nice Sophia Antipolis, CNRS, UMR6543, Inst Dev Biol & Canc, F-06108 Nice 2, France
[6] Univ Ulm, Dept Pediat & Adolescent Med, Div Pediat Endocrinol, D-89075 Ulm, Germany
[7] Nijmegen Ctr Mol Life Sci, Dept Mol Biol, NL-6525 GA Nijmegen, Netherlands
[8] Univ Med Ctr Utrecht, Dept Pediat Immunol, NL-3584 EA Utrecht, Netherlands
关键词
NICOTINIC-ACID RECEPTOR; TYPE-2; DIABETES-MELLITUS; MATURE; 3T3-L1; ADIPOCYTES; NECROSIS-FACTOR-ALPHA; HUMAN ADIPOSE-TISSUE; FREE FATTY-ACIDS; PPAR-GAMMA; PUMA-G; INSULIN-RESISTANCE; MOLECULAR-IDENTIFICATION;
D O I
10.1074/jbc.M109.040741
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The ligand-inducible nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR gamma) plays a key role in the differentiation, maintenance, and function of adipocytes and is the molecular target for the insulin-sensitizing thiazoledinediones (TZDs). Although a number of PPAR gamma target genes that may contribute to the reduction of circulating free fatty acids after TZD treatment have been identified, the relevant PPAR gamma target genes that may exert the anti-lipolytic effect of TZDs are unknown. Here we identified the anti-lipolytic human G-protein-coupled receptor 81 (GPR81), GPR109A, and the (human-specific) GPR109B genes as well as the mouse Gpr81 and Gpr109A genes as novel TZD-induced genes in mature adipocytes. GPR81/Gpr81 is a direct PPAR gamma target gene, because mRNA expression of GPR81/Gpr81 (and GPR109A/Gpr109A) increased in mature human and murine adipocytes as well as in vivo in epididymal fat pads of mice upon rosiglitazone stimulation, whereas small interfering RNA-mediated knockdown of PPAR gamma in differentiated 3T3-L1 adipocytes showed a significant decrease in Gpr81 protein expression. In addition, chromatin immunoprecipitation sequencing analysis in differentiated 3T3-L1 cells revealed a conserved PPAR: retinoid X receptor-binding site in the proximal promoter of the Gpr81 gene, which was proven to be functional by electromobility shift assay and reporter assays. Importantly, small interfering RNA-mediated knockdown of Gpr81 partly reversed the inhibitory effect of TZDs on lipolysis in 3T3-L1 adipocytes. The coordinated PPAR gamma-mediated regulation of the GPR81/Gpr81 and GPR109A/Gpr109A genes (and GPR109B in humans) presents a novel mechanism by which TZDs may reduce circulating free fatty acid levels and perhaps ameliorate insulin resistance in obese patients.
引用
收藏
页码:26385 / 26393
页数:9
相关论文
共 54 条
[1]  
Ausubel F.M., 1993, CURRENT PROTOCOLS MO
[2]   Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension [J].
Barroso, I ;
Gurnell, M ;
Crowley, VEF ;
Agostini, M ;
Schwabe, JW ;
Soos, MA ;
Maslen, GL ;
Williams, TDM ;
Lewis, H ;
Schafer, AJ ;
Chatterjee, VKK ;
O'Rahilly, S .
NATURE, 1999, 402 (6764) :880-883
[3]   Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: Peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach [J].
Bays, H ;
Mandarino, L ;
DeFronzo, RA .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2004, 89 (02) :463-478
[4]   Effect of thiazolidinediones on glucose and fatty acid metabolism in patients with type 2 diabetes [J].
Boden, G ;
Cheung, P ;
Mozzoli, M ;
Fried, SK .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2003, 52 (06) :753-759
[5]   Role of fatty acids in the pathogenesis of insulin resistance and NIDDM [J].
Boden, G .
DIABETES, 1997, 46 (01) :3-10
[6]   LACTATE INHIBITION OF LIPOLYSIS IN EXERCISING MAN [J].
BOYD, AE ;
GIAMBER, SR ;
MAGER, M ;
LEBOVITZ, HE .
METABOLISM-CLINICAL AND EXPERIMENTAL, 1974, 23 (06) :531-542
[7]   Role of GPR81 in lactate-mediated reduction of adipose lipolysis [J].
Cai, Tian-Quan ;
Ren, Ning ;
Jin, Lan ;
Cheng, Kang ;
Kash, Shera ;
Chen, Ruoping ;
Wright, Samuel D. ;
Taggart, Andrew K. P. ;
Waters, M. Gerard. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2008, 377 (03) :987-991
[8]   Adipose tissue expression of the lipid droplet-associating proteins S3-12 and perilipin is controlled by peroxisome proliferator-activated receptor-γ [J].
Dalen, KT ;
Schoonjans, K ;
Ulven, SM ;
Weedon-Fekjaer, MS ;
Bentzen, TG ;
Koutnikova, H ;
Auwerx, J ;
Nebbl, HI .
DIABETES, 2004, 53 (05) :1243-1252
[9]   INFLUENCE OF LACTATE ON ISOPROTERENOL-INDUCED LIPOLYSIS AND BETA-ADRENOCEPTORS DISTRIBUTION IN HUMAN FAT-CELLS [J].
DEPERGOLA, G ;
CIGNARELLI, M ;
NARDELLI, G ;
GARRUTI, G ;
CORSO, M ;
DIPAOLO, S ;
CARDONE, F ;
GIORGINO, R .
HORMONE AND METABOLIC RESEARCH, 1989, 21 (04) :210-213
[10]   Regulation of lipolysis in adipocytes [J].
Duncan, Robin E. ;
Ahmadian, Maryam ;
Jaworski, Kathy ;
Sarkadi-Nagy, Eszter ;
Sul, Hei Sook .
ANNUAL REVIEW OF NUTRITION, 2007, 27 :79-101