Large solutions for equations involving the p-Laplacian and singular weights

被引:22
作者
Garcia-Melian, Jorge [1 ]
机构
[1] Univ La Laguna, Dpto Anal Matemat, San Cristobal la Laguna 38271, Spain
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2009年 / 60卷 / 04期
关键词
Boundary blow-up; p-Laplacian; singular weights; BOUNDARY BLOW-UP; LINEAR ELLIPTIC PROBLEMS; ASYMPTOTIC-BEHAVIOR; EXPLOSIVE SOLUTIONS; UNIQUENESS; EXISTENCE; REGULARITY;
D O I
10.1007/s00033-008-7141-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the boundary blow-up problem Delta(p)u = a(x)u(q) in a smooth bounded domain Omega of R-N, with u = +infinity on partial derivative Omega. Here Delta(p)u = div(vertical bar del u vertical bar(p-2)del u) is the well-known p-Laplacian operator with p > 1, q > p - 1, and a(x) is a nonnegative weight function which can be singular on partial derivative Omega. Our results include existence, uniqueness and exact boundary behavior of positive solutions.
引用
收藏
页码:594 / 607
页数:14
相关论文
共 41 条
[1]  
[Anonymous], 1974, CONTRIBUTIONS ANAL A
[2]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[3]  
BANDLE C, 1990, CR ACAD SCI I-MATH, V311, P91
[4]  
BANDLE C, 1994, SYM MATH, V35, P93
[5]  
Bieberbach L., 1916, Math. Ann, V77, P173, DOI [10.1007/BF01456901, DOI 10.1007/BF01456901]
[6]   Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights [J].
Chuaqui, M ;
Cortazar, C ;
Elgueta, M ;
Garcia-Melian, J .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2004, 3 (04) :653-662
[7]   On an elliptic problem with boundary blow-up and a singular weight:: the radial case [J].
Chuaqui, M ;
Cortázar, C ;
Elgueta, M ;
Flores, C ;
Letelier, R ;
García-Melián, J .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1283-1297
[8]  
Cîrstea FC, 2006, ASYMPTOTIC ANAL, V46, P275
[9]   General uniqueness results and variation speed for blow-up solutions of elliptic equations [J].
Cîrstea, FC ;
Du, YH .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :459-482
[10]   Uniqueness of the blow-up boundary solution of logistic equations with absorbtion [J].
Cîrstea, FC ;
Radulescu, V .
COMPTES RENDUS MATHEMATIQUE, 2002, 335 (05) :447-452