Common Fixed Points for Nonlinear Quasi-Contractions of Ciric Type

被引:5
作者
He, Fei [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
关键词
CONE METRIC-SPACES; VARIATIONAL PRINCIPLE; EQUIVALENCE; THEOREMS;
D O I
10.1155/2014/450792
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish common fixed points theorems for two self-mappings satisfying a nonlinear contractive condition of Ciric type with a Q-function. Furthermore, using the scalarization method, we deduce some results of common fixed point in tvs-cone metric spaces with a c-distance. As application, we give a positive answer to the question of Ciric et al. posed in 2012. Our results extend and generalize many recent results.
引用
收藏
页数:9
相关论文
共 20 条
[1]   Some generalizations of Ekeland-type variational principle with applications to equilibrium problems and fixed point theory [J].
Al-Homidan, S. ;
Ansari, Q. H. ;
Yao, J. -C. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (01) :126-139
[2]   Fixed point theory in cone metric spaces obtained via the scalarization method [J].
Amini-Harandi, A. ;
Fakhar, M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (11) :3529-3534
[3]  
Chen GY, 2005, LECT NOTES ECON MATH, V541, P1, DOI 10.1007/3-540-28445-1
[4]   Common fixed point theorems on generalized distance in ordered cone metric spaces [J].
Cho, Yeol Je ;
Saadati, Reza ;
Wang, Shenghua .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (04) :1254-1260
[5]   Fixed point theorems for w-cone distance contraction mappings in tvs-cone metric spaces [J].
Ciric, Ljubomir ;
Lakzian, Hossein ;
Rakocevic, Vladimir .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[6]  
Di Bari C, 2012, FIXED POINT THEOR-RO, V13, P453
[7]   Fixed point results under c-distance in tvs-cone metric spaces [J].
Dordevic, Momcilo ;
Doric, Dragan ;
Kadelburg, Zoran ;
Radenovic, Stojan ;
Spasic, Dragoljub .
FIXED POINT THEORY AND APPLICATIONS, 2011,
[8]   On some nonlinear problems induced by an abstract maximal element principle [J].
Du, Wei-Shih .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (02) :391-399
[9]   A note on cone metric fixed point theory and its equivalence [J].
Du, Wei-Shih .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) :2259-2261
[10]  
Fadail Z. M., 2012, ABSTR APPL ANAL, V2012