Electrochemical Characterization of an Oleyl-coated Magnetite Nanoparticle-Modified Electrode

被引:26
作者
Murugappan, Krishnan [1 ]
Silvester, Debbie S. [1 ]
Chaudhary, Deeptangshu [2 ,3 ]
Arrigan, Damien W. M. [1 ]
机构
[1] Curtin Univ, Dept Chem, Nanochem Res Inst, Perth, WA 6845, Australia
[2] Curtin Univ, Nanochem Res Inst, Dept Chem Engn, Perth, WA 6845, Australia
[3] ERS Environm Risk Solut Pty Ltd, Perth Off, Applecross, WA 6153, Australia
基金
澳大利亚研究理事会;
关键词
confocal raman spectroscopy; cyclic voltammetry; electrochemistry; magnetite nanoparticles; modified electrodes; GAS-SENSING PROPERTIES; OXIDE NANOPARTICLES; DISSOLUTION KINETICS; FE3O4; NANOPARTICLES; VERWEY TRANSITION; IRON-OXIDES; RAMAN; ACID; ELECTRODISSOLUTION; SCATTERING;
D O I
10.1002/celc.201402012
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical behavior of oleyl-coated Fe3O4 nanoparticles synthesized by chemical co-precipitation is investigated. An approach based on the formation of a film of nanoparticles on an electrode surface is employed together with cyclic voltammetry. Characterization by scanning electron microscopy, confocal Raman spectroscopy, and X-ray photoelectron spectroscopy shows that Fe3O4 nanoparticles with a particle size of 20 nm coated with oleic acid are synthesized. These nanoparticles show superparamagnetic behavior and form a homogene-ous film from their solution when dried in air. The nanoparticle film electrodes display redox behavior in acidic media but not in alkaline media, which suggests that protons take part in the electrochemical reaction. It is estimated that there are about 240 layers of nanoparticles deposited on the surface and that only around 1% of these nanoparticles are electrochemically active. This is attributed to either the long-chain surfactant or the large number of layers of nanoparticles inhibiting the electron- transfer process.
引用
收藏
页码:1211 / 1218
页数:8
相关论文
共 48 条
[1]   Facile Microwave-Assisted Synthesis and Magnetic and Gas Sensing Properties of Fe3O4 Nanoroses [J].
Ai, Zhihui ;
Deng, Kejian ;
Wan, Qianfen ;
Zhang, Lizhi ;
Lee, Shuncheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (14) :6237-6242
[2]   A Novel Spinning Disc Continuous Stir Tank and Settler Reactor (SDCSTR) Model for Continuous Synthesis of Titania: A Phenomenological Model [J].
Akindeju, M. K. ;
Pareek, V. K. ;
Tade, M. O. ;
Rohl, A. L. .
CHEMICAL ENGINEERING COMMUNICATIONS, 2010, 198 (01) :73-84
[3]   Synthesis, magnetic and ethanol gas sensing properties of semiconducting magnetite nanoparticles [J].
Al-Ghamdi, Ahmed A. ;
Al-Hazmi, Faten ;
Al-Tuwirqi, R. M. ;
Alnowaiser, F. ;
Al-Hartomy, Omar A. ;
El-Tantawy, Farid ;
Yakuphanoglu, F. .
SOLID STATE SCIENCES, 2013, 19 :111-116
[4]   THE ELECTRODISSOLUTION OF MAGNETITE .2. THE OXIDATION OF BULK MAGNETITE [J].
ALLEN, PD ;
HAMPSON, NA ;
BIGNOLD, GJ .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1980, 111 (2-3) :223-233
[5]   ELECTRODISSOLUTION OF MAGNETITE .1. ELECTROCHEMISTRY OF FE3O4-C DISKS - POTENTIODYNAMIC EXPERIMENTS [J].
ALLEN, PD ;
HAMPSON, NA ;
BIGNOLD, GJ .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1979, 99 (03) :299-309
[6]   A Dopamine Sensor Based on Pre-Concentration by Magnetic Nanoparticles [J].
Bagherzadeh, Mojtaba ;
Ansari, Somayeh ;
Riahi, Fariborz ;
Farahbakhsh, Anahita .
INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY, 2013, 2013
[7]   VOLTAMMETRY, ELECTRON-MICROSCOPY, AND X-RAY ELECTRON-PROBE MICROANALYSIS AT THE ELECTRODE AQUEOUS-ELECTROLYTE INTERFACE OF SOLID MICROCRYSTALLINE CIS-CR(CO)2(DPE)2 AND TRANS-CR(CO)2(DPE)2 AND TRANS-[CR(CO)2(DPE)2]+ COMPLEXES (DPE = PH2PCH2CH2PPH2) MECHANICALLY ATTACHED TO CARBON ELECTRODES [J].
BOND, AM ;
COLTON, R ;
DANIELS, F ;
FERNANDO, DR ;
MARKEN, F ;
NAGAOSA, Y ;
VANSTEVENINCK, RFM ;
WALTER, JN .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (21) :9556-9562
[8]  
Brad AJ., 2000, Electrochemical Methods: Fundamentals and Applications
[9]   ACIDIC AND REDUCTIVE DISSOLUTION OF MAGNETITE IN AQUEOUS SULFURIC-ACID - SITE-BINDING MODEL AND EXPERIMENTAL RESULTS [J].
BRUYERE, VIE ;
BLESA, MA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1985, 182 (01) :141-156
[10]   Analysis of Fe2O3 and Fe3O4 dissolution kinetics in terms of the chain mechanism model [J].
Chastukhin, AE ;
Izotov, AD ;
Gorichev, IG ;
Kutepov, AM .
THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2003, 37 (04) :398-406