Purpose: CD70 (CD27L) is a member of the tumor necrosis factor family aberrantly expressed on a number of hematologic malignancies and some carcinomas. CD70 expression on malignant cells coupled with its highly restricted expression on normal cells makes CD70 an attractive target for monoclonal antibody (mAb)-based therapies. We developed a humanized anti-CD70 antibody, SGN-70, and herein describe the antitumor activities of this mAb. Experimental Design: CD70 expression on primary tumors was evaluated by immunohistochemical staining of Hodgkin lymphoma, non-Hodgkin lymphoma, multiple myeloma, and renal cell carcinoma tissue microarrays. The CD70-binding and cytotoxic activities of SGN-70 were tested in vitro using a number of cell-based assays. The in vivo antitumor properties of SGN-70 were tested in severe combined immunodeficient mice bearing disseminated lymphoma and multiple myeloma xenografts. Mechanism-of-action studies were conducted using SGN-70v, a variant mAb with equivalent target-binding activity but impaired Fc gamma receptor binding compared with SGN-70. Results: Immunohistochemical analysis identified CD70 expression on similar to 40% of multiple myeloma isolates and confirmed CD70 expression on a high percentage of Hodgkin lymphoma Reed-Sternberg cells, non-Hodgkin lymphoma, and renal cell carcinoma tumors. SGN-70 lysed CD70(+) tumor cells via Fc-dependent functions, including antibody-dependent cellular cytotoxicity and phagocytosis and complement fixation. In vivo, SGN-70 treatment significantly decreased tumor burden and prolonged survival of tumor-bearing mice. Conclusions: SGN-70 is a novel humanized IgG1 mAb undergoing clinical development for the treatment of CD70(+) cancers. SGN-70 possesses Fc-dependent antibody effector functions and mediates antitumor activity in vivo.