Step Refinable Functions and Orthogonal MRA on Vilenkin Groups

被引:30
作者
Lukomskii, Sergey F.
机构
基金
俄罗斯基础研究基金会;
关键词
Zero-dimensional groups; MRA; Vilenkin groups; Refinable functions; Wavelet bases; MULTIRESOLUTION ANALYSIS; WAVELET ANALYSIS; LOCAL-FIELDS;
D O I
10.1007/s00041-013-9301-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find necessary and sufficient conditions on refinable step function under which this function generates an orthogonal MRA in the -spaces on Vilenkin group . We consider a class of refinable step functions for which the mask m (0)(chi) is constant on cosets and its modulus |m (0)(chi)| has two values only: 0 and 1. We prove that any refinable step function phi from this class that generates an orthogonal MRA on Vilenkin group has Fourier transform with condition . We show the sharpness of this result, too.
引用
收藏
页码:42 / 65
页数:24
相关论文
共 30 条
[1]  
Agaev G.N., 1981, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups
[2]   The Cauchy problems for evolutionary pseudo-differential equations over p-adic field and the wavelet theory [J].
Albeverio, S. ;
Khrennikov, A. Yu. ;
Shelkovich, V. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) :82-98
[3]   p-Adic Multiresolution Analysis and Wavelet Frames [J].
Albeverio, S. ;
Evdokimov, S. ;
Skopina, M. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2010, 16 (05) :693-714
[4]  
Albeverio S., 2010, THEORY P ADIC DISTRI
[5]  
[Anonymous], 1995, OXFORD MATH MONOGRAP
[6]  
[Anonymous], 1988, THESIS U PENNSYLVANI
[7]   Multiresolution analysis on local fields and characterization of scaling functions [J].
Behera, Biswaranjan ;
Jahan, Qaiser .
ADVANCES IN PURE AND APPLIED MATHEMATICS, 2012, 3 (02) :181-202
[8]   A wavelet theory for local fields and related groups [J].
Benedetto, JJ ;
Benedetto, RL .
JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (03) :423-456
[9]  
Evdokimov S., 2012, J MATH SCI, V400, p[158, 215]
[10]  
Farkov Y.A., 2011, IZV VYSS UCEBN ZAVED, V7, p[57, 47]