Numerical interpretation of high-altitude photoelectron observations

被引:50
作者
Liemohn, Michael W. [1 ]
Frahm, R. A.
Winningham, J. D.
Ma, Y.
Barabash, S. B.
Lundin, R.
Kozyra, J. U.
Nagy, A. F.
Bougher, S. M.
Bell, J.
Brain, D.
Mitchell, D.
Luhmann, J.
Holmstrom, M.
Andersson, H.
Yamauchi, M.
Grigoriev, A.
McKennna-Lawler, S.
Sharber, J. R.
Scherrer, J. R.
Jeffers, S. J.
Coates, A. J.
Linder, D. R.
Kataria, D. O.
Kallio, E.
Koskinen, H.
Sales, T.
Riihela, P.
Schmidt, W.
Roelof, E.
Williams, D.
Livi, S.
Curtis, C. C.
Hsieh, K. C.
Sandel, B. R.
Grande, M.
Carter, M.
Sauvaud, J. -A.
Fedorov, A.
Thocaven, J. -J.
Orsini, S.
Cerulli-Irelli, R.
Maggi, M.
Wurz, P.
Bochsler, P.
Krupp, N.
Woch, J.
Fraenz, M.
Asamura, K.
Dierker, C.
机构
[1] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA
[2] SW Res Inst, San Antonio, TX USA
[3] Swedish Inst Space Phys, S-98128 Kiruna, Sweden
[4] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[5] Natl Univ Ireland, Space Technol Ireland, Maynooth, Kildare, Ireland
[6] SW Res Inst, San Antonio, TX 78228 USA
[7] UCL, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England
[8] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[9] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
[10] Univ Arizona, Tucson, AZ 85721 USA
[11] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England
[12] Ctr Etud Spatiale Rayonnements, F-31028 Toulouse, France
[13] Ist Fis Spazio Interplanetario, I-00133 Rome, Italy
[14] Univ Bern, Inst Phys, CH-3012 Bern, Switzerland
[15] Max Planck Inst Aeron, D-37191 Katlenburg Lindau, Germany
[16] Inst Space & Astronaut Sci, Sagamihara, Japan
[17] Tech Univ Braunschweig, D-38106 Braunschweig, Germany
关键词
Mars; magnetospheres; ionospheres; magnetic fields;
D O I
10.1016/j.icarus.2005.10.036
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Electron Spectrometer (ELS) instrument of the ASPERA-3 package on the Mars Express satellite has recorded photoelectron energy spectra up to apoapsis (similar to 10.000 km altitude). The characteristic photoelectron shape of the spectrum is sometimes seen well above the ionosphere in the evening sector across a wide range of near-equatorial latitudes. Two numerical models are used to analyze the characteristics of these high-altitude photoelectrons. The first is a global, multi-species MHD code that produces a 3-D representation of the magnetic field and bulk plasma parameters around Mars. It is used here to examine the possibility of magnetic connectivity between the high-altitude flanks of the martian ionosheath and the subsolar ionosphere. It is shown that some field lines in this region are draped interplanetary magnetic lines while others are open field lines (connected to both the IMF and the crustal magnetic field sources). The second model is a kinetic electron transport model that calculates the electron velocity space distribution along a selected, non-uniform, magnetic field line. It is used here to simulate the high-altitude ELS measurements. It is shown that the photoelectrons are essentially confined to the source cone, as governed by magnetic field inhomogeneity along the field line. Reasonable agreement is shown between the data and the model results, and a method is demonstrated for inferring properties of the local and photoelectron source region magnetic field from the ELS measurements. Specifically, the number of sectors in which photoelectrons are measured is a function of the magnetic field intensity ratio and the field's angle with respect to the detector plane. In addition, the sector of the photoelectron flux peak is a function of the magnetic field azimuthal angle in the detector plane. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:383 / 395
页数:13
相关论文
共 35 条
[1]   Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment [J].
Acuña, MH ;
Connerney, JEP ;
Ness, NF ;
Lin, RP ;
Mitchell, D ;
Carlson, CW ;
McFadden, J ;
Anderson, KA ;
Rème, H ;
Mazelle, C ;
Vignes, D ;
Wasilewski, P ;
Cloutier, P .
SCIENCE, 1999, 284 (5415) :790-793
[2]   An improved 50-degree spherical harmonic model of the magnetic field of Mars derived from both high-altitude and low-altitude data [J].
Arkani-Hamed, J .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2002, 107 (E10)
[3]   A 50-degree spherical harmonic model of the magnetic field of Mars [J].
Arkani-Hamed, J .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2001, 106 (E10) :23197-23208
[4]  
Barabash S., 2004, Andrew Wilson, P121
[5]   Mars Global Surveyor Radio Science electron density profiles: Neutral atmosphere implications [J].
Bougher, SW ;
Engel, S ;
Hinson, DP ;
Forbes, JM .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (16) :3091-3094
[6]  
Chicarro A., 2004, MARS EXPRESS MISSION, V1240, P3
[7]   Evidence of electron impact ionization in the magnetic pileup boundary of Mars [J].
Crider, D ;
Cloutier, P ;
Law, C ;
Walker, P ;
Chen, Y ;
Acuña, M ;
Connerney, J ;
Mitchell, D ;
Lin, R ;
Anderson, K ;
Carlson, C ;
McFadden, J ;
Rème, H ;
Mazelle, C ;
d'Uston, C ;
Sauvaud, J ;
Vignes, D ;
Brain, D ;
Ness, N .
GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (01) :45-48
[8]  
Crider D. H., 2002, Geophysical Research Letters, V29, P11, DOI 10.1029/2001GL013860
[9]   HIGH-RESOLUTION DAYTIME PHOTOELECTRON ENERGY-SPECTRA FROM AE-E [J].
DOERING, JP ;
PETERSON, WK ;
BOSTROM, CO ;
POTEMRA, TA .
GEOPHYSICAL RESEARCH LETTERS, 1976, 3 (03) :129-131
[10]   ELECTRON-ENERGY DEPOSITION IN CARBON-DIOXIDE [J].
FOX, JL ;
DALGARNO, A .
PLANETARY AND SPACE SCIENCE, 1979, 27 (04) :491-502