A truncated Newton algorithm for large scale box constrained optimization

被引:37
作者
Facchinei, F [1 ]
Lucidi, S [1 ]
Palagi, L [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Informat & Sistemist A Ruberti, I-00185 Rome, Italy
关键词
bound constrained problem; penalty function; Newton method; conjugate gradient; nonmonotone line search;
D O I
10.1137/S1052623499359890
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for the solution of minimization problems with simple bounds is presented. Global convergence of a general scheme requiring the approximate solution of a single linear system at each iteration is proved and a superlinear convergence rate is established without requiring the strict complementarity assumption. The algorithm proposed is based on a simple, smooth unconstrained reformulation of the bound constrained problem and may produce a sequence of points that are not feasible. Numerical results and comparison with existing codes are reported.
引用
收藏
页码:1100 / 1125
页数:26
相关论文
共 41 条
[1]  
AVERICK BM, 1992, MCSP1530694 ANL MATH
[2]  
Bertsekas D., 2019, Reinforcement Learning and Optimal Control
[4]   CUTE - CONSTRAINED AND UNCONSTRAINED TESTING ENVIRONMENT [J].
BONGARTZ, I ;
CONN, AR ;
GOULD, N ;
TOINT, PL .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01) :123-160
[5]   ON THE IDENTIFICATION OF ACTIVE CONSTRAINTS [J].
BURKE, JV ;
MORE, JJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (05) :1197-1211
[6]   PROJECTED GRADIENT METHODS FOR LINEARLY CONSTRAINED PROBLEMS [J].
CALAMAI, PH ;
MORE, JJ .
MATHEMATICAL PROGRAMMING, 1987, 39 (01) :93-116
[7]  
COLEMAN T, 1987, MATH PROGRAM, V45, P373
[8]   An interior trust region approach for nonlinear minimization subject to bounds [J].
Coleman, TF ;
Li, YY .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) :418-445
[9]  
Conn A., 1992, LANCELOT FORTRAN PAC, DOI 10.1007/978-3-662-12211-2
[10]  
CONN AR, 1988, MATH COMPUT, V50, P399, DOI 10.1090/S0025-5718-1988-0929544-3