Period-doubling bifurcations in the family of Chebyshev-Halley-type methods

被引:5
作者
Cordero, Alicia [1 ]
Torregrosa, Juan R. [1 ]
Vindel, P. [2 ]
机构
[1] Univ Politecn Valencia, Inst Matemat Multidisciplinar, E-46071 Valencia, Spain
[2] Univ Jaume 1, Inst Matemat & Aplicac Castellon, Castellon de La Plana, Spain
关键词
numerical methods; Chebyshev-Halley methods; bifurcations; dynamics of numerical method; period-doubling bifurcation; 37F10; 37G15; ITERATIVE METHODS; DYNAMICS;
D O I
10.1080/00207160.2012.745518
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The choice of a member of a parametric family of iterative methods is not always easy. The family of Chebyshev-Halley schemes is a good example of it. The analysis of bifurcation points of this family allows us to define a real interval in which there exist several problematic behaviours: attracting points that become doubled, other ones that become periodic orbits, etc. These aspects should be avoided in an iterative procedure, so it is important to determine the regions where this conduct takes place. In this paper, we obtain that this family admits attractive 2-cycles in two different intervals, for real values of the parameter.
引用
收藏
页码:2061 / 2071
页数:11
相关论文
共 38 条
[21]   Period-doubling bifurcation analysis of stochastic van der Pol system via Chebyshev polynomial approximation [J].
Ma, SJ ;
Xu, W ;
Li, W ;
Jin, YF .
ACTA PHYSICA SINICA, 2005, 54 (08) :3508-3515
[22]   Influence of period-doubling bifurcations in the appearance of border collisions for a ZAD-strategy-controlled buck converter [J].
D'Amico, M. B. ;
Angulo, F. ;
Olivar, G. ;
Paolini, E. E. ;
Moiola, J. L. .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2012, 40 (01) :77-91
[23]   Fractal Dimension of the Universal Julia Sets for the Chebyshev-Halley Family of Methods [J].
Gutierrez, J. M. ;
Magrenan, A. A. ;
Varona, J. L. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
[24]   An efficient family of Chebyshev-Halley's methods for system of nonlinear equations [J].
Behl, Ramandeep .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (04) :868-885
[25]   Some variants of the Chebyshev-Halley family of methods with fifth order of convergence [J].
Grau-Sanchez, Miquel ;
Gutierrez, Jose M. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (04) :818-833
[26]   Period-Doubling and Neimark-Sacker Bifurcations of a Beddington Host-Parasitoid Model with a Host Refuge Effect [J].
Kalabusic, Senada ;
Drino, Dzana ;
Pilav, Esmir .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (16)
[27]   Multiple Hopf bifurcations, period-doubling reversals and coexisting attractors for a novel chaotic jerk system with Tchebytchev polynomials [J].
Ramadoss, Janarthanan ;
Kengne, Jacques ;
Koinfo, Jean Baptiste ;
Rajagopal, Karthikeyan .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 587
[28]   An optimal reconstruction of Chebyshev-Halley type methods for nonlinear equations having multiple zeros [J].
Alshomrani, Ali Saleh ;
Behl, Ramandeep ;
Kanwar, V. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 354 :651-662
[29]   The Evolution of the Phase Space Structure Along Pitchfork and Period-Doubling Bifurcations in a 3D-Galactic Bar Potential [J].
Moges, H. T. ;
Katsanikas, M. ;
Patsis, P. A. ;
Hillebrand, M. ;
Skokos, Ch. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (06)
[30]   Inverse period-doubling bifurcations determine complex structure of bursting in a one-dimensional non-autonomous map [J].
Han, Xiujing ;
Chen, Zhenyang ;
Bi, Qinsheng .
CHAOS, 2016, 26 (02)