Growth of rutile TiO2 nanorods on TiO2 seed layer prepared using facile low cost chemical methods

被引:36
作者
Soundarrajan, P. [1 ]
Sankarasubramanian, K. [1 ]
Logu, T. [1 ]
Sethuraman, K. [1 ]
Ramamurthi, K. [2 ]
机构
[1] Madurai Kamaraj Univ, Sch Phys, Madurai 625021, Tamil Nadu, India
[2] SRM Univ, Dept Phys & Nanotechnol, Madras 603203, Tamil Nadu, India
关键词
Spray pyrolysis; TiO2 thin film; Hydrothermal; Crystal growth; X-ray techniques; Raman; CDS QUANTUM DOTS; TITANIUM-DIOXIDE; EFFICIENCY; WATER;
D O I
10.1016/j.matlet.2013.11.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dense rutile TiO2 nanorods were grown on an anatase TiO2 seed layer by a wet-chemical approach in which the nuclei layer was prepared by the chemical spray pyrolysis technique. Structural, morphological, and optical properties of prepared samples were investigated using X-ray diffraction (XRD), micro-Raman, scanning electron microscopy (SEM), atomic force microscopy (AFM), UV-vis spectroscopy, and fluorescence spectroscopy. From XRD, a clear authentication that, the preferentially oriented (101) crystallographic planes indicate that the rutile TiO2 nanorods are standing randomly along the normal to the substrate surface. Anatase TiO2 seed layer and rutile nanorods structural phases are clearly confirmed by micro-Raman measurement. SEM and AFM studies reveal that the TiO2 seed layer consists of high density nanoparticles with the thickness of 0.15 mu m and the height of the as-grown nanorods is similar to 0.6 mu m. The band gap energy of the anatase TiO2 seed layer and rutile as-grown nanorods is calculated using UV-vis absorption spectra and the band gap values of seed layer and nanorods are 3.21 eV and 2.95 eV respectively. The crystal defects of prepared films are measured using photoluminescence spectra. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:191 / 194
页数:4
相关论文
共 14 条
[1]   RAMAN-SPECTROSCOPIC OBSERVATION OF LASER-INDUCED OXIDATION OF TRANSITION-METAL BORIDES, CARBIDES, AND NITRIDES [J].
BEGUN, GM ;
BAMBERGER, CE .
APPLIED SPECTROSCOPY, 1989, 43 (01) :134-138
[2]   Statistics-based model for basis set superposition error correction in large biomolecules [J].
Faver, John C. ;
Zheng, Zheng ;
Merz, Kenneth M., Jr. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (21) :7795-7799
[3]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[4]   An Efficient Method To Form Heterojunction CdS/TiO2 Photoelectrodes Using Highly Ordered TiO2 Nanotube Array Films [J].
Gao, Xian-Feng ;
Sun, Wen-Tao ;
Hu, Zhu-Dong ;
Ai, Guo ;
Zhang, Yi-Ling ;
Feng, Shi ;
Li, Fei ;
Peng, Lian-Mao .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (47) :20481-20485
[5]   Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries [J].
Li, Jianming ;
Wan, Wang ;
Zhou, Henghui ;
Li, Jingjian ;
Xu, Dongsheng .
CHEMICAL COMMUNICATIONS, 2011, 47 (12) :3439-3441
[6]   Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy [J].
Ma, W ;
Lu, Z ;
Zhang, M .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (06) :621-627
[7]   ZnO-TiO2 Nanocomposite Films for High Light Harvesting Efficiency and Fast Electron Transport in Dye-Sensitized Solar Cells [J].
Manthina, Venkata ;
Baena, Juan Pablo Correa ;
Liu, Guangliang ;
Agrios, Alexander G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (45) :23864-23870
[8]   A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS [J].
OREGAN, B ;
GRATZEL, M .
NATURE, 1991, 353 (6346) :737-740
[9]   Growth of rutile TiO2 nanorods on TiO2 seed layer deposited by electron beam evaporation [J].
Tamilselvan, V. ;
Yuvaraj, D. ;
Kumar, R. Rakesh ;
Rao, K. Narasimha .
APPLIED SURFACE SCIENCE, 2012, 258 (10) :4283-4287
[10]   Photosensitization of TiO2 nanorods with CdS quantum dots for photovoltaic applications: A wet-chemical approach [J].
Wang, Chenbo ;
Jiang, Zifei ;
Wei, Lin ;
Chen, Yanxue ;
Jiao, Jun ;
Eastman, Micah ;
Liu, Hong .
NANO ENERGY, 2012, 1 (03) :440-447