Oxidation driven ZnS Core-ZnO shell photocatalysts under controlled oxygen atmosphere for improved photocatalytic solar water splitting

被引:29
作者
Bak, Daegil [1 ]
Kim, Jung Hyeun [1 ]
机构
[1] Univ Seoul, Dept Chem Engn, 163 Siripdaero, Seoul 02504, South Korea
基金
新加坡国家研究基金会;
关键词
Photocatalyst; Hydrogen production; Zinc sulfide; Thermal oxidation; Core shell; CHEMICAL CONVERSION SYNTHESIS; EFFICIENT H-2 PRODUCTION; HYDROGEN-PRODUCTION; PHOTOELECTROCATALYTIC DEGRADATION; TIO2-GRAPHENE HYDROGEL; BISPHENOL-A; ADSORPTION; REMOVAL; SULFIDE; HYBRID;
D O I
10.1016/j.jpowsour.2018.04.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Zinc type photocatalysts attract great attentions in solar hydrogen production due to their easy availability and benign environmental characteristics. Spherical ZnS particles are synthesized with a facile hydrothermal method, and they are further used as core materials to introduce ZnO shell layer surrounding the core part by partial oxidation under controlled oxygen contents. The resulting ZnS core-ZnO shell photocatalysts represent the heterostructural type II band alignment. The existence of oxide layer also influences on proton adsorption power with an aid of strong base cites derived from highly electronegative oxygen atoms in ZnO shell layer. Photocatalytic water splitting reaction is performed to evaluate catalyst efficiency under standard one sun condition, and the highest hydrogen evolution rate (1665 mu molg(-1)h(-1)) is achieved from the sample oxidized at 16.2 kPa oxygen pressure. This highest hydrogen production rate is achieved in cooperation with increased light absorption and promoted charge separations. Photoluminescence analysis reveals that the improved visible light response is obtained after thermal oxidation process due to the oxygen vacancy states in the ZnO shell layer. Therefore, overall photocatalytic efficiency in solar hydrogen production is enhanced by improved charge separations, crystallinity, and visible light responses from the ZnS core-ZnO shell structures induced by thermal oxidation.
引用
收藏
页码:70 / 76
页数:7
相关论文
共 59 条
[1]   Morphology Transition Engineering of ZnO Nanorods to Nanoplatelets Grafted Mo8O23-MoO2 by Polyoxometalates: Mechanism and Possible Applicability to other Oxides [J].
Abdelmohsen, Ahmed H. ;
El Rouby, Waleed M. A. ;
Ismail, Nahla ;
Farghali, Ahmed A. .
SCIENTIFIC REPORTS, 2017, 7
[2]   Facile Synthesis of n-type (AgIn)X Zn2(1-x)S2/p-type Ag2S Nanocomposite for Visible Light Photocatalytic Reduction To Detoxify Hexavalent Chromium [J].
Abdullah, Hairus ;
Kuo, Dong-Hau .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (48) :26941-26951
[3]   The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes [J].
Alvi, N. H. ;
ul Hasan, Kamran ;
Nur, Omer ;
Willander, Magnus .
NANOSCALE RESEARCH LETTERS, 2011, 6 :1-7
[4]   Cu-doped ZnS hollow particle with high activity for hydrogen generation from alkaline sulfide solution under visible light [J].
Arai, Takeo ;
Senda, Shin-ichiro ;
Sato, Yoshinori ;
Takahashi, Hideyuki ;
Shinoda, Kozo ;
Jeyadevan, Balachandran ;
Tohji, Kazuyuki .
CHEMISTRY OF MATERIALS, 2008, 20 (05) :1997-2000
[5]   Facile fabrication of pseudo-microspherical ZnO/CdS core-shell photocatalysts for solar hydrogen production by water splitting [J].
Bak, Daegil ;
Kim, Jung Hyeun .
CERAMICS INTERNATIONAL, 2017, 43 (16) :13493-13499
[6]   Photoluminescence and Photoconductivity of ZnS-Coated ZnO Nanowires [J].
Bera, Ashok ;
Basak, Durga .
ACS APPLIED MATERIALS & INTERFACES, 2010, 2 (02) :408-412
[7]  
BOEHM HP, 1971, DISCUSS FARADAY SOC, P264
[8]   Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@rGO exhibiting adsorption/photocatalysis synergy [J].
Chen, Fangyuan ;
An, Weijia ;
Liu, Li ;
Liang, Yinghua ;
Cui, Wenquan .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 217 :65-80
[9]   Porous ZnO Polygonal Nanoflakes: Synthesis, Use in High-Sensitivity NO2 Gas Sensor, and Proposed Mechanism of Gas Sensing [J].
Chen, Mei ;
Wang, Zhihua ;
Han, Dongmei ;
Gu, Fubo ;
Guo, Guangsheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (26) :12763-12773
[10]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570