A proof of the q,t-square conjecture

被引:9
作者
Can, Mahir [1 ]
Loehr, Nicholas
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
square lattice paths; Catalan numbers; Bergeron-Garsia nabla operator; plethysm; Macdonald polynomials;
D O I
10.1016/j.jcta.2006.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a combinatorial formula conjectured by Loehr and Warrington for the coefficient of the sign character in del(p(n)). Here del denotes the Bergeron-Garsia nabla operator, and p is a power-sum symmetric function. The combinatorial formula enumerates lattice paths in an n x n square according to two suitable statistics. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1419 / 1434
页数:16
相关论文
共 16 条
[1]   A proof of the q,t-Catalan positivity conjecture [J].
Garsia, AM ;
Haglund, J .
DISCRETE MATHEMATICS, 2002, 256 (03) :677-717
[2]   A remarkable q,t-Catalan sequence and q-Lagrange inversion [J].
Garsia, AM ;
Haiman, M .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1996, 5 (03) :191-244
[3]   A positivity result in the theory of Macdonald polynomials [J].
Garsia, AM ;
Haglund, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (08) :4313-4316
[4]   A combinatorial formula for the character of the diagonal convariants [J].
Haglund, J ;
Haiman, M ;
Loehr, N ;
Remmel, JB ;
Ulyanov, A .
DUKE MATHEMATICAL JOURNAL, 2005, 126 (02) :195-232
[5]   A proof of the q, t-Schroder conjecture [J].
Haglund, J .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (11) :525-560
[6]   t,q-Catalan numbers and the Hilbert scheme [J].
Haiman, M .
DISCRETE MATHEMATICS, 1998, 193 (1-3) :201-224
[7]   Vanishing theorems and character formulas for the Hilbert scheme of points in the plane [J].
Haiman, M .
INVENTIONES MATHEMATICAE, 2002, 149 (02) :371-407
[8]   Hilbert schemes, polygraphs and the Macdonald positivity conjecture [J].
Haiman, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :941-1006
[9]   Lagrange inversion and Schur functions [J].
Lenart, C .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2000, 11 (01) :69-78
[10]  
Macdonald I. G., 1995, Oxford Classic Texts in the Physical Sciences, V2nd