Diffuse interface modeling of three-phase contact line dynamics on curved boundaries: A lattice Boltzmann model for large density and viscosity ratios

被引:154
作者
Fakhari, Abbas [1 ]
Bolster, Diogo [1 ]
机构
[1] Univ Notre Dame, Dept Civil & Environm Engn & Earth Sci, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
Contact angle; Contact line dynamics; Curved boundary; Lattice Boltzmann method; Superhydrophobic surface; INCOMPRESSIBLE 2-PHASE FLOWS; CIRCULAR-CYLINDER; GRID REFINEMENT; DROP IMPACT; LIQUID-GAS; SIMULATION; EQUATION; FLUID; TRANSITIONS; SYSTEM;
D O I
10.1016/j.jcp.2017.01.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We introduce a simple and efficient lattice Boltzmann method for immiscible multiphase flows, capable of handling large density and viscosity contrasts. The model is based on a diffuse-interface phase-field approach. Within this context we propose a new algorithm for specifying the three-phase contact angle on curved boundaries within the framework of structured Cartesian grids. The proposed method has superior computational accuracy compared with the common approach of approximating curved boundaries with stair cases. We test the model by applying it to four benchmark problems: (i) wetting and dewetting of a droplet on a flat surface and (ii) on a cylindrical surface, (iii) multiphase flow past a circular cylinder at an intermediate Reynolds number, and (iv) a droplet falling on hydrophilic and superhydrophobic circular cylinders under differing conditions. Where available, our results show good agreement with analytical solutions and/or existing experimental data, highlighting strengths of this new approach. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:620 / 638
页数:19
相关论文
共 79 条
[41]   A multiphase lattice Boltzmann method for simulating immiscible liquid-liquid interface dynamics [J].
Leclaire, Sebastien ;
Pellerin, Nicolas ;
Reggio, Marcelo ;
Trepanier, Jean-Yves .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (13-14) :6376-6394
[42]   An approach to control the spurious currents in a multiphase lattice Boltzmann method and to improve the implementation of initial condition [J].
Leclaire, Sebastien ;
Pellerin, Nicolas ;
Reggio, Marcelo ;
Trepanier, Jean-Yves .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 77 (12) :732-746
[43]   A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio [J].
Lee, T ;
Lin, CL .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (01) :16-47
[44]   Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces [J].
Lee, Taehun ;
Liu, Lin .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (20) :8045-8062
[45]   Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model [J].
Li, Q. ;
Luo, K. H. ;
Li, X. J. .
PHYSICAL REVIEW E, 2013, 87 (05)
[46]   Special phenomena from a single liquid drop impact on wetted cylindrical surfaces [J].
Liang, Gangtao ;
Guo, Yali ;
Yang, Yong ;
Guo, Song ;
Shen, Shengqiang .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2013, 51 :18-27
[47]   Preconditioned multigrid methods for unsteady incompressible flows [J].
Liu, C ;
Zheng, X ;
Sung, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 139 (01) :35-57
[48]   Multiphase lattice Boltzmann simulations for porous media applications [J].
Liu, Haihu ;
Kang, Qinjun ;
Leonardi, Christopher R. ;
Schmieschek, Sebastian ;
Narvaez, Ariel ;
Jones, Bruce D. ;
Williams, John R. ;
Valocchi, Albert J. ;
Harting, Jens .
COMPUTATIONAL GEOSCIENCES, 2016, 20 (04) :777-805
[49]   Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows [J].
Liu, Haihu ;
Valocchi, Albert J. ;
Zhang, Yonghao ;
Kang, Qinjun .
PHYSICAL REVIEW E, 2013, 87 (01)
[50]   Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations [J].
Liu, Haihu ;
Valocchi, Albert J. ;
Kang, Qinjun .
PHYSICAL REVIEW E, 2012, 85 (04)